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A. Basic definitions, microscopic Hamiltonian of
the system, and the general structure of the

continuity equation

Description of collective behavior of quantum plasmas
can be started with the concentration or the number den-
sity of particles [1], [2], [3]

n =

∫
dR

N∑
i=1

δ(r− ri)Ψ
†(R, t)Ψ(R, t), (1)

which is the first collective variable in our model. Other
collective variables appear during the derivation. Equa-

tion (1) contains the following notations dR =
∏N

i=1 dri
is the element of volume in 3N dimensional configura-
tional space, with N is the number of electrons. Symbol
† means the Hermitian conjugation.
If we consider the separate spin evolution hydrody-

namics we need to split concentration of electrons on two
parts: ne = n↑ + n↓. This separation is made in accor-
dance with the structure of the wave function [2], [3], [4],
[5]

ns =

∫
dR

N∑
i=1

δ(r− ri)Ψ
∗
s(R, t)Ψs(R, t), (2)

where

Ψ(R, t) =

(
Ψ↑(R, t)
Ψ↓(R, t)

)
. (3)

Symbol ∗ means the complex conjugation. Sum in equa-
tion (2) is made for all electrons. The probability to have
a specified spin projection is kept in the wave function.
Spin polarization of each electron can be partial.
Evolution of functions (1) and (2) is calculated using

the Schrodinger equation ıh̄∂tΨ = ĤΨ with Hamiltonian

Ĥ =

N∑
i=1

(
p̂2
i

2mi

)
+

1

2

∑
i,j ̸=i

q2e
| ri − rj |

, (4)

where mi is the mass of i-th particle, p̂i = −ıh̄∇i is the
momentum of i-th particle.
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Current of particles with the spin projection s appear
in the continuity equation in the following form [2], [3],
[4], [5]:

js =

∫
dR

N∑
i=1

δ(r− ri)×

× 1

2mi
(Ψ∗

s(R, t)p̂iΨs(R, t) + c.c.), (5)

with c.c. is the complex conjugation.

B. General structure of the momentum balance
equation

Definition of current (5) allows to derive the Euler
equation for the current (momentum density) evolution
using the Schrodinger equation with Hamiltonian (4):

∂tj
α
s + ∂βΠ

αβ
s =

1

m
Fα
int, (6)

where

Παβ
s =

∫
dR

N∑
i=1

δ(r− ri)
1

4m2
[Ψ∗

s(R, t)p̂αi p̂
β
i Ψs(R, t)

+p̂α∗i Ψ∗
s(R, t)p̂βi Ψs(R, t) + c.c.] (7)

is the momentum flux, and

Fα
int = −

∫
(∂αU(r− r′))n2,ss′(r, r

′, t)dr′ (8)

is the force field for the Coulomb interaction, with the
two-particle concentration

n2(r, r
′, t)

=

∫
dR

N∑
i,j=1,j ̸=i

δ(r− ri)δ(r
′− rj)Ψ

∗
s(R, t)Ψs(R, t), (9)

and the Coulomb interaction potential

U(r− r′) =
q2e

| r− r′ |
. (10)
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The Euler equation (6) is obtained in Refs. [2], [3], [4],
[5].

The Euler equation has simple structure. It shows that
the time evolution of the current or the momentum den-
sity j is caused by two mechanisms. One of them is the
kinetic momentum flux presented on the left-hand side.
It is related to the motion of particles being in the fixed
states. The second mechanism is the interaction. Same
structure repeats itself in other hydrodynamic equations
for the physical quantities with the higher rank tensors.
The evolution of the chosen quantities caused by its flux
and due to the interaction.

C. General structure of equation for the second
rank tensor

Extending the set of hydrodynamic equations we can
derive the equation for the momentum flux evolution.
Consider the time evolution of the momentum flux (7)
using the Schrodinger equation with Hamiltonian (4) and
derive the momentum flux evolution equation

∂tΠ
αβ
s + ∂γM

αβγ
s =

1

m
(Fαβ + F βα), (11)

where the force field tensor

Fαβ = −
∫
[∂αU(r− r′)]jβ2,ss′(r, r

′, t)dr′ (12)

represents the interaction,

Mαβγ
s =

∫
dR

N∑
i=1

δ(r−ri)
1

8m3
i

[
Ψ∗

s(R, t)p̂αi p̂
β
i p̂

γ
i Ψs(R, t)

+p̂α∗i Ψ∗
s(R, t)p̂βi p̂

γ
i Ψs(R, t) + p̂α∗i p̂γ∗i Ψ∗

s(R, t)p̂βi Ψs(R, t)

+p̂γ∗i Ψ∗
s(R, t)p̂αi p̂

β
i Ψs(R, t) + c.c.

]
(13)

is the flux of the momentum flux, and two-particle
current-concentration function:

j2,ss′(r, r
′, t) =

∫
dR

∑
i,j ̸=i

δ(r− ri)δ(r
′ − rj)×

× 1

2mi
(Ψ∗

s(R, t)p̂iΨs(R, t) + c.c.). (14)

If quantum correlations are dropped function jα2 (r, r
′, t)

splits on product of the current jα(r, t) and the concen-
tration n(r′, t).

D. General structure of equation for the third rank
tensor

General structure of the evolution equation for the
third rank tensor Mαβγ

s is:

∂tM
αβγ
s + ∂δR

αβγδ
s

=
1

m
(Fαβγ

Q + F βαγ + F βαγ + F βαγ), (15)

where

Fαβγ
Q =

h̄2

4m3

∫
[∂α∂β∂γU(r− r′)]n2(r, r

′, t)dr′ (16)

is the quantum part of interaction reported in this paper,

Fαβγ = −
∫
[∂αU(r− r′)]Πβγ

2 (r, r′, t)dr′ (17)

is the quasi-classic part of interaction,

Rαβγδ
s =

∫
dR

N∑
i=1

δ(r−ri)
1

16m4
i

[
Ψ∗

s(R, t)p̂αi p̂
β
i p̂

γ
i p̂

δ
iΨs(R, t)

+p̂α∗i Ψ∗
s(R, t)p̂βi p̂

γ
i p̂

δ
iΨs(R, t)+p̂α∗i p̂γ∗i p̂δ∗i Ψ∗

s(R, t)p̂βi Ψs(R, t)

+p̂γ∗i Ψ∗
s(R, t)p̂αi p̂

β
i p̂

δ
iΨs(R, t)+p̂α∗i p̂β∗i p̂γ∗i Ψ∗

s(R, t)p̂δiΨs(R, t)

+p̂α∗i p̂δ∗i Ψ∗
s(R, t)p̂βi p̂

γ
i Ψs(R, t)+p̂α∗i p̂γ∗i Ψ∗

s(R, t)p̂βi p̂
δ
iΨs(R, t)

+p̂γ∗i p̂δ∗i Ψ∗
s(R, t)p̂αi p̂

β
i Ψs(R, t) + c.c.

]
(18)

is the flux of Mαβγ
s and

Παβ
2,ss′(r, r

′, t) =

∫
dR

∑
i,j ̸=i

δ(r− ri)δ(r
′ − rj)

1

4m2
i

×

×(Ψ∗
s(R, t)p̂αi p̂

β
i Ψs(R, t)+(p̂αi Ψs(R, t))∗p̂βi Ψs(R, t)+c.c.).

(19)

If quantum correlations are dropped function Παβ
2 (r, r′, t)

splits on product of the momentum flux Παβ(r, t) and the
concentration n(r′, t).

General untruncated form of the equation for the
”thermal” part of the third rank tensor (the part defined
in the comoving frame) has the following form

∂tQ̃
αβγ
s + ∂δ(v

δ
sQ̃

αβγ
s ) + Q̃αγδ

s ∂δv
β
s + Q̃βγδ

s ∂δv
α
s

+Q̃αβδ
s ∂δv

γ
s + ∂δ(P

αβγδ
s + Tαβγδ

s ) =
h̄2

4m3
qens∂

α∂β∂γΦ
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+
1

mn
[(pαβs + Tαβ

s )∂δ(pγδs + T γδ
s ) + (pαγs + Tαγ

s )×

×∂δ(pβδs + T βδ
s ) + (pβγs + T βγ

s )∂δ(pαδs + Tαδ
s )], (20)

where Q̃αβγ
s = Qαβγ

s + Tαβγ
s ,

Tαβγ
s = − h̄2

12m2
ns(∂

α∂βvγs + ∂α∂γvβs + ∂β∂γvαs ) (21)

is the third rank tensor which is the analog of the quan-
tum Bohm potential, the fourth rank tensor Pαβγδ

s is
constructed on the thermal velocities or the velocities in
the local frame, basically the fourth rank tensor Pαβγδ

s

is the analog of the pressure tensor with higher tensor
rank,

Tαβγδ
s,lin =

h̄4

8m4

√
ns∂

α∂β∂γ∂δ√ns

+2pαβs T γδ
s /ns + 2pαγs T βδ

s /ns + 2pαδs T βγ
s /ns

+2pβγs Tαδ
s /ns + 2pβδs Tαγ

s /ns + 2pγδs Tαβ
s /ns. (22)

is the main part of the fourth rank tensor which is the
analog of the quantum Bohm potential.
It is necessary to omit the term proportional to the

spatial derivatives of the fourth and second rank kinetic
tensors in accordance with estimations presented in Ref.
[6], but the term ∂δP

αβγδ
s is kept to get some rough esti-

mations of the fourth rank pressure-like tensor contribu-
tion.

E. Equilibrium expressions for the pressure and
pressure-like third and fourth rank tensors

Perturbations of pressure tensor and the third rank
tensor can be found from the corresponding equations of
evolution. However, their equilibrium values are found
via the equilibrium distribution function chosen in the
form of the Fermi step function:

pαβ0s = m

∫ pFs

0

pαpβ
d3p

(2πh̄)3
, (23)

and

Qαβγ
0s =

∫ pFs

0

pαpβpγ
d3p

(2πh̄)3
= 0. (24)

The equation of state for the thermal part (or the Pauli
blocking part) of the fourth rank tensor is also found via
the equilibrium distribution function chosen in the form
of the Fermi step function:

Pαβγδ
0s =

∫ pFs

0

pαpβpγpδ
d3p

(2πh̄)3
, (25)

where symbol p with no indexes is the momentum, pFs =
(6π2n0s)

1/3h̄ is the partial Fermi momentum.

F. Fourth rank quantum Bohm potential

The fourth rank tensor, which is similar in nature with
the quantum Bohm potential, appears in the equation for
evolution of the third rank tensor equation (20). It has
rather complex form. Therefore, it is not demonstrated
in the main part of the paper.

Hence, this tensor is given as the superposition of three
parts:

Tαβγδ
s =

3∑
i=1

Tαβγδ
si . (26)

The first part can be approximately written via the
concentration of fermions:

Tαβγδ
s1 =

h̄4

8m4

[√
n∂α∂β∂γ∂δ

√
n

+∂α∂β
√
n·∂γ∂δ

√
n+∂α∂γ

√
n·∂β∂δ

√
n+∂α∂δ

√
n·∂β∂γ

√
n

−∂α
√
n · ∂β∂γ∂δ

√
n− ∂β

√
n · ∂α∂γ∂δ

√
n

−∂γ
√
n · ∂α∂β∂δ

√
n− ∂δ

√
n · ∂α∂β∂γ

√
n

]
. (27)

Similar approximation is used for the quantum Bohm
potential in equation (5) in the main text.

The second part of tensor Tαβγδ
s contains the tradi-

tional quantum Bohm potential:

Tαβγδ
s2 = 2

[
vγvδTαβ

micro+vγ⟨uδtαβ⟩+vδ⟨uγtαβ⟩+⟨uγuδtαβ⟩
]

+2

[
vβvδTαγ

micro + vβ⟨uδtαγ⟩+ vδ⟨uβtαγ⟩+ ⟨uβuδtαγ⟩
]

+2

[
vγvβTαδ

micro + vγ⟨uβtαδ⟩+ vβ⟨uγtαδ⟩+ ⟨uγuβtαδ⟩
]

+2

[
vαvδT βγ

micro + vα⟨uδtβγ⟩+ vδ⟨uαtβγ⟩+ ⟨uαuδtβγ⟩
]

+2

[
vαvγT βδ

micro + vγ⟨uαtβδ⟩+ vα⟨uγtβδ⟩+ ⟨uαuγtβδ⟩
]

+2

[
vαvβT γδ

micro + vα⟨uβtγδ⟩+ vβ⟨uαtγδ⟩+ ⟨uαuβtγδ⟩
]
,

(28)
where

tαβ =
h̄2

4m2
(a∂α∂βa− ∂αa · ∂βa), (29)
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Tαβ
micro =

h̄2

4m2

∫
dR

N∑
i=1

δ(r− ri)t
αβ

=

∫
dR

N∑
i=1

δ(r− ri)(a∂
α∂βa− ∂αa · ∂βa), (30)

where Tαβ
micro = ⟨tαβ⟩. Equation (30) approximately gives

the quantum Bohm potential Tαβ
micro ≈ Tαβ . However,

other expressions like ⟨uαtβδ⟩ has no simple expression.
Using the theorem on average we can make the follow-
ing approximation ⟨uαtβδ⟩ = (Tαβ/n)⟨a2uα⟩ = 0, since
⟨a2uα⟩ = 0 by definition of the thermal velocity. More-
over, we find ⟨uαuβtγδ⟩ ≈ (T γδ/n)pαβ . These expres-
sions are used as the equation of state for the described
functions.
The third part of tensor Tαβγδ

s is constructed of the
velocities

Tαβγδ
s3 =

h̄2

24m2

[
nvα[∂β∂γvδ + ∂γ∂δvβ + ∂β∂δvγ ]

+nvβ [∂α∂γvδ + ∂α∂δvγ + ∂γ∂δvα]

+nvγ [∂α∂βvδ + ∂α∂δvβ + ∂β∂δvα]

+nvδ[∂α∂βvγ + ∂α∂γvβ + ∂β∂γvα]

+vα[⟨a2∂β∂γuδ⟩+ ⟨a2∂β∂δuγ⟩+ ⟨a2∂γ∂δuβ⟩]

+vβ [⟨a2∂α∂γuδ⟩+ ⟨a2∂α∂δuγ⟩+ ⟨a2∂γ∂δuα⟩]

+vγ [⟨a2∂α∂βuδ⟩+ ⟨a2∂α∂δuβ⟩+ ⟨a2∂β∂δuα⟩]

+vδ[⟨a2∂α∂βuγ⟩+ ⟨a2∂α∂γuβ⟩+ ⟨a2∂β∂γuα⟩]

+[⟨a2uα∂β∂γuδ⟩+ ⟨a2uα∂β∂δuγ⟩+ ⟨a2uα∂γ∂δuβ⟩]

+[⟨a2uβ∂α∂γuδ⟩+ ⟨a2uβ∂α∂δuγ⟩+ ⟨a2uβ∂γ∂δuα⟩]

+[⟨a2uγ∂α∂βuδ⟩+ ⟨a2uγ∂α∂δuβ⟩+ ⟨a2uγ∂β∂δuα⟩]

+[⟨a2uδ∂α∂βuγ⟩+ ⟨a2uδ∂α∂γuβ⟩+ ⟨a2uδ∂β∂γuα⟩]

]
.

(31)
Approximate equation of state for Tαβγδ

s3 has the fol-
lowing form

Tαβγδ
s3,appr =

h̄2

24m2

[
nvα[∂β∂γvδ + ∂γ∂δvβ + ∂β∂δvγ ]

+nvβ [∂α∂γvδ + ∂α∂δvγ + ∂γ∂δvα]

+nvγ [∂α∂βvδ + ∂α∂δvβ + ∂β∂δvα]

+nvδ[∂α∂βvγ + ∂α∂γvβ + ∂β∂γvα]

]
. (32)

It is equal to zero in the linear approximation for the
macroscopically motionless plasmas since it is nonlinear
on the velocity field.

G. Title of the developed approximation

Various extended hydrodynamics can be developed.
Suggested model is called 20-moment hydrodynamics.
We have five traditional moments: concentration n, pro-
jections of momentum nvx, nvy, nvz, and energy density
(or the temperature) ε = pββ/3. Six functions are in
the pressure tensor pαβ , but one of them is taken for the
energy density. Three functions are in the energy cur-
rent. Their account leads to the traditional 13-moments
approximation. Furthermore, the symmetric third rank
tensor Qαβγ has 10 independent elements, but three of
them give the energy current. Therefore, the account of
the third rank tensor Qαβγ makes the model 20-moment
hydrodynamics, where twenty independent functions are
used to describe each species.
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