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In Supplementary part we present theoretical techniques employed to study mechanisms
of plasma disruption and the formation of runaway electrons in tokamaks. First, the
relativistic Hamiltonian equations for guiding–center motion in a toroidal system are
recalled. The models for magnetic fields of the pre–disruption equilibrium plasma and
a stochastic magnetic field during a plasma disruption are described. The effects of a
toroidal electric field and magnetic perturbations on the dynamics of electrons are ana-
lyzed. Particularly, the formula for the outward drift velocity in a toroidal electric field is
derived. To study heat and particle transport during thermal and current quench regimes
we used the model of a stochastic magnetic field. The test particle transport model is
used to estimate thermal and current quench times. magnetic field

1. Introduction

Supplementary part of the paper consists of six sections. In Sec. 2 the Hamiltonian
equations of relativistic guiding–center (GC) motion is a toroidal system are recalled.
The descriptions of the models for pre–disruption equilibrium plasma, the toroidal elec-
tric field, the MHD modes, and the dynamic ergodic divertor (DED) of the TEXTOR
tokamak are given in Secs. 3, 4, 5.1, and 5.2, respectively. The particle dynamics in the
presence of magnetic perturbations is studied in Secs. 6.1, 6.2, and 6.3. Hamiltonian
equations for the magnetic field lines and the model of a stochastic magnetic field used
to simulate the heat and particle transport is described in Secs. 7.1 and 7.2. In Sec. 7.4
the collisional transport model in a stochastic magnetic field is recalled and it is used to
calculate the radial diffusion coefficients of electrons and particles during the fast phase
and the current decay phase of plasma disruption.

2. Guiding–center motions in toroidal plasmas

To study the RE orbits we employ the version of the relativistic Hamiltonian equations
for a GC motion in a toroidal system given in Refs. (Abdullaev & Finken 2002; Abdullaev
et al. 2006; Wingen et al. 2006) (see Chapt. 4 in (Abdullaev 2014) for more details). In
this section the brief description of the corresponding equations is given.

We use the cylindrical coordinate system (R,Z, ϕ), where R,Z are the radial and
vertical coordinates, respectively, and ϕ is the toroidal angle. For generality, we consider
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a motion of a charged particle of mass m0 and a charge qa = Zqe, where e is the
elementary charge, and Zq = −1 for electrons and Zq = 1 for protons. The magnetic
field of the system is described by the vector potential A(R,Z, ϕ, t̃) = (AR = 0, AZ , Aϕ).
The radial component AR is set to zero, because of a gauge invariance. The electric field
is given by the scalar potential Φ(R,Z, ϕ, t̃). The time variable is notated by t̃.

The Hamiltonian GC equations are derived by the transformation of the canonical vari-
ables (R,Z, ϕ, PR, Pz, Pϕ) of a gyrating particle to the canonical ones (ϑR, Zc, ϕc, IR, Pzc, Pϕc)
of the GC motion. Here (PR, Pz, Pϕ) are momenta canonically conjugated to the coor-
dinates (R,Z, ϕ), and (ϑR, IR) are the conjugated radial gyrophase and the action vari-
ables introduced for the fast gyrating motion of particle along the radial coordinate R.
For the variables (ϑR, Zc, ϕc, IR, Pzc, Pϕc) one obtains the six–dimensional (6-D) system
of Hamiltonian equations.

In typical tokamak configurations the variable IR can be treated as an adiabatic invari-
ant. Then the Hamiltonian GC equations can be reduced to the 4-D system of equations,
thus reducing the three–degrees of freedom of system to the two–degrees one.

Furthermore, we will omit subscript “c” in all variables and use the normalized vari-
ables

x = R/R0, z = Z/R0,

pz = PZ/m0ω0R0, pϕ = Pϕ/m0ω0R
2
0,

t = ω0t̃, (2.1)

where ω0 = eB0/m0c is a reference gyrofrequency, B0 is the toroidal magnetic field
strength at the torus center R0, c is the speed of light in vacuum. We introduce also
the reference energy Eref = m0ω

2
0R

2
0. The Hamiltonian equations for the canonical GC

variables (q1, q2, p1, p2) = (z, ϕ, pz, pϕ) are

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −
∂H

∂qi
, (i = 1, 2). (2.2)

with the Hamiltonian function given by

H = ε0

[
1 +

2ωxIx
ε0

+
u2ϕ
ε0

]1/2
+ Zqφ, (2.3)

where uϕ = (pϕ + Zqψ) /xc, ε0 = m0c
2/Eref = (c/ω0R0)

2
is a normalized energy of a

particle at rest. The quantities,

ψ ≡ ψ(xc, z, ϕ, t) = −RAϕ/B0R
2
0,

φ ≡ φ(xc, z, ϕ, t) = eΦ/Eref , (2.4)

are the normalized toroidal component of the vector potential and the normalized scalar
potential of the electric field. Here Ix = ω0IR/Eref is the normalized action variable. The
radial component of the GC coordinate xc, (xc = Rc/R0) is a function of the canonical
variables (z, ϕ, pz, pϕ) and determined by the balance equation of the centripetal force
to the Lorentz force. When the typical toroidal fields it can be approximated as xc =
exp(−pz/Zq). The normalized radial gyrofrequency ωx = ωR/ω0 is then determined by
ωx = |Zq| exp(pz/Zq).

Since the runaway electrons (REs) are passing particles one can also reformulate Hamil-
tonian equations by introducing the toroidal angle ϕ as the independent, time-like vari-
able and the corresponding canonical momentum pϕ as a new Hamiltonian K = −pϕ.
The Hamiltonian equations for the canonical guiding–center variables (q1, q2, p1, p2) =
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(z, t, pz, pt = −H) have the form similar to (2.2) with the Hamiltonian function K =
K(z, t, pz, pt, ϕ)

K = Zqψ(x, z, ϕ, t)− σxcuϕ, (2.5)

where

uϕ ≡ uϕ(x, z, ϕ, t, pt) =
[
ε0(γ

2
t − 1)− 2ωxIx

]1/2
,

γt =
−pt − Zqφ

ε0
(2.6)

is the relativistic factor. For the co-passing particles (σ = +1) the set of Hamiltonian
equations (2.7) should be integrated along the positive direction of the toroidal angle ϕ,
and vice versa for counter–passing particles (σ = −1).

The system of Hamiltonian equations can be written down as

dz

dϕ
=
∂K

∂pz
=
xc
Zq

[
− Zq

∂ψ

∂xc
+

σ

uϕ

(
ε0(γ

2
t − 1)− ωxIx − xcγtZq

∂φ

∂xc

)]
,

dpz
dϕ

= −
∂K

∂z
= −Zq

(
∂ψ

∂z
+
σγtxc
uϕ

∂φ

∂z

)
,

dt

dϕ
=
∂K

∂pt
=
σγtxc
uϕ

,

dpt
dϕ

= −
∂K

∂t
= −Zq

(
∂ψ

∂t
+
σγtxc
uϕ

∂φ

∂t

)
. (2.7)

The ratio λI = Ix/TK of the gyromotion energy, Ix, to the full kinetic energy of a particle,
Tk = ε0(γt − 1), is considered as the initial parameter of motion. From the experimental
measurements it follows that the parameter λI may reach a value of 0.1 (Finken et al.

1990; Jaspers 1995). Furthermore we will assume that λI ≤ 0.1.

The system of equations (2.7) for the guiding–center motion can be presented in the
form similar to the equations for magnetic field lines in the cylindrical coordinate system
(R,Z, ϕ). Using the definitions,

BR = Bϕ
∂ψ

∂z
, BZ = −

B0

x

∂ψ

∂x
, (2.8)

where Bϕ = R0B0/R is the toroidal magnetic field, and the relations (2.1), one can
reduce the system (2.7) to the one with real variables

dZ

dϕ
=
RB∗

Z

Bϕ
−

σR2

vϕBϕR0

∂Φ

∂R
,

dR

dϕ
=
RBR
Bϕ

+
σR2

vϕBϕR0

∂Φ

∂Z
,

dt̃

dϕ
=
σR

vϕ
,

dH

dϕ
= −Zq

∂(RAϕ)

∂t̃
+ Zq

σR

vϕ

∂Φ

∂t
, (2.9)

where vϕ = uϕR0ω0/γt is the toroidal velocity. The quantity B∗
Z given by

B∗
Z = BZ +

σBϕ
Zq

(
uϕ +

ωxIx
uϕ

)
. (2.10)

can be called as the effective poloidal field. In the absence of the potential electric field
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Φ ≡ 0, we have

dZ

dϕ
=
RB∗

Z

Bϕ
,

dR

dϕ
=
RBR
Bϕ

,

dt̃

dϕ
=
σR

vϕ
,

dH

dϕ
= −Zq

∂(RAϕ)

∂t̃
. (2.11)

3. Models of equilibrium magnetic field

In a cylindrical plasma the safety factor profile can be found by the density profile
of the toroidal plasma current j(ρ). The poloidal magnetic field Bθ is determined by
according to the Ampère’s law

Bθ(R,Z) =
µoI(ρ)

2πρ
=
µo
ρ

∫ r

0

j(ρ′)ρ′dρ′,

where I(ρ) is the current flowing inside the magnetic surface of radius ρ. The safety
factor q(ρ) in the cylindrical geometry is defined as

qcyl(ρ) =
ρB0

RBθ
=

2πρ2B0

µoR0I(ρ)
. (3.1)

The value of the safety factor at the plasma edge ρ = a is determined by the total plasma
current Ip,

qa = qcyl(a) =
2πa2B0

µoR0Ip
. (3.2)

Consider the model plasma current given by the density

j(ρ) =





Ip(ν + 1)

πa2
(
1− ρ2/a2

)ν
, for ρ ≤ a,

0, for ρ > a,
(3.3)

where ν in the constant parameter. Then

I(ρ) =

{
Ip

[
1−

(
1− ρ2/a2

)ν+1
]
, for ρ ≤ a,

Ip, for ρ > a,
(3.4)

The safety factor qcyl(r) corresponding to this plasma current distribution is given by

qcyl(ρ) =




qa

ρ2/a2

1− (1− ρ2/a2)
ν+1 , for ρ ≤ a,

qaρ
2/a2, for ρ > a.

(3.5)

The value of the safety factor at the magnetic axis q(0) is determined by qa and ν:
q(0) = qa/(ν + 1).

The toroidal corrections to the safety factor can be also found in the limit of large aspect
ratio R/r ≫ 1. The expansion of the safety factor in a series of powers ε = ρ/Rp(ρ) is
given by (see, (Abdullaev et al. 1999; Abdullaev 2006)),

q(ρ) = qcyl(ρ)
R2

0

R2
p(ρ)

(
1 +

1

2
a2ε

2 +
3

8
a4ε

4

)
+O(ε8), (3.6)

where qcyl(ρ) is the safety factor in the cylindrical geometry (3.1). The coefficients am
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Figure 1. Radial profile of the plasma current Ip(ρ) (3.4) (solid curves 1 on l.h.s. axis) and
the safety factor profile q(ρ) (3.6) (dashed curves 2 on r.h.s. axis). The plasma parameters are
Ip = 300 kA, B0 = 2.4 T, R0 = 1.75 m, a = 0.46 m. The values of q(0) = 0.8.

are polynomial functions of the plasma parameter Λ = βpol + li/2− 1:

am = (−1)m
m∑

k=0

(m− k + 1)Λk. (3.7)

Here li is the plasma inductance. The plasma current profile Ip(ρ) (3.4) and the safety
factor profile q(ρ) are plotted in Figure 1 for the full plasma current Ip = 0.3 MA and
q(0) = 0.8.

4. An electron in an inductive electric field

In this section we recall the dynamics of electrons in the presence of the toroidal electric
field induced by the plasma current decay during the plasmas disruption (Abdullaev
2015). Such an electric field can be introduced by the toroidal component of the inductive

vector potential A
(ind)
ϕ (t̃) (Knoepfel & Spong 1979),

Eϕ(R,Z, t̃) = −
∂A

(ind)
ϕ (t̃)

∂t̃
,

A(ind)
ϕ (R,Z, t̃) =

∫ t̃
[
V (t̃)

2πR
−

1

R

∂

∂t̃

∫ b

rR

RBp(r, t̃)dr

]
dt̃, (4.1)

where V (t̃) is the loop voltage. The second term in the bracket of (4.1) describes the
poloidal flux change due to rise or fall of the plasma current.

Then the poloidal flux ψ in the Hamiltonian function (2.3) is given by

ψ = −
RAϕ
B0R2

0

= ψ(0)(x, z) + ψ(ind)(x, z, t),

Aϕ = A(0)
ϕ (R,Z) +A(ind)

ϕ (R,Z, t̃),

ψ(0)(x, z) = −
RAϕ
B0R2

0

, ψ(ind)(x, z, t) = −
RA

(ind)
ϕ (R,Z, t)

B0R2
0

. (4.2)

Here A
(0)
ϕ (R,Z) is the toroidal component of the vector potential related to the equi-

librium plasma. In normalized variables the inductive poloidal flux ψ(ind)(x, z, t) can be
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presented as

ψ(ind)(x, z, t) = −
RA

(ind)
ϕ (R,Z, t)

B0R2
0

=

∫ t

Eϕ(x, z, t
′)dt′, (4.3)

where Eϕ(t) is the normalized toroidal electric field

Eϕ(x, z, t) =
REϕ(R,Z, t̃)

B0R2
0ω0

=
Vϕ(R,Z, t)

2πB0R2
0ω0

. (4.4)

Here t̃ is replaced by the normalized time t = ω0t̃. Then the change of the energy is given
by

dH

dt
=
∂H

∂t
= Zq

∂hc
∂pϕ

∂ψ

∂t
=
Zquϕ
xcγt

Eϕ(t). (4.5)

The energy grows if ZquϕEϕ(t) > 0. Furthermore, we assume that the loop voltage V and
thus Eϕ(t) are constants in the poloidal section. Then the increment of particles energy
in one poloidal turn is given by

∆H =

∫ t+T

t

dH

dt
dt = Zq

∫ t+T

t

dϕ

dt
Eϕ(t)dt ≈ ZqEϕ(t)∆ϕ, (4.6)

where ∆ϕ is the increment of the toroidal angle ϕ in one poloidal turn and T is the
normalized transition time. Introducing the effective safety factor qeff = |∆ϕ|/2π (see
Sec. 6.1) the energy increment ∆E in real variables can be written as

∆E = Eref∆H = σqeffVϕ. (4.7)

Now we estimate the outward drift velocity vdr of orbits in a toroidal electric field.
Suppose that the toroidal plasma has axisymmetry along the toroidal angle ϕ, i.e., ψ =
ψ(x, z, t) and uϕ = uϕ(x, pt). Then the toroidal momentum pϕ is constant of motion.
According to (2.5) the drift surface at the time instant t is determined by the surface

K = −pϕ = f(x, z) = Zqψ(x, z, t)− σxuϕ(x, pt) = const, (4.8)

where the poloidal flux ψ(x, z, t) is given by (4.2). According to the latter and (4.6) in one
poloidal turn the poloidal flux ψ and the energy H = −pt get increments ∆ψ = TZqEϕ
and ∆H, respectively. Since the increment ∆K = 0 the drift surface shifts along the radial
direction. Let ∆x be a corresponding shift. From (4.8) one can obtain the expression for
∆x:

∆x =
Zq(

Zq
∂ψ

∂x
−

σ

uϕ
[ε0(γ2t − 1)− ωxIx]

)
(
x
2πqeffγt

uϕ
− T

)
Eϕ. (4.9)

From (4.9) we obtain the formula for the outward drift velocity

vdr = ω0
∆R

T
=
Eϕ
B∗
z

(
R0

R
−
Tav

T̃

)
, (4.10)

where B∗
z is the effective poloidal field given by (2.10), ∆R = R0∆x is the radial shift

of an orbit, T̃ = ω−1
0 T is the actual transit time. The quantity Tav = 2πqeffR0/vϕ is

an average transition time. The formula (4.10) quite well reproduces the numerically
calculated outward drift velocities.

In particularly case Tav = T̃ , σ = 1 and for low–energy electrons when B∗
z ≈ Bz the
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formula (4.10) can be reduced to the one obtained by (Guan et al. 2010; Qin et al. 2011)
for the circular GC orbits,

vdr = −
Eϕ (R−R0)

RBz
. (4.11)

One should note that the expression (4.10) describes not only the outward drift velocity
of electron orbits but also the inward drift (the Ware pinch) velocity of trapped electrons.
More detailed discussion of the drifts of electron orbits in the toroidal electric field can
be found in Abdullaev (2015).

5. Models of magnetic perturbations

5.1. Model of MHD modes

The magnetic perturbations due to the MHD modes can described by the vector potential

A
(1)
ϕ (R,Z, ϕ, t). We present as sum

A(1)
ϕ (R,Z,ϕ, t) = −

R2
0

R

∑

mn

m−1BmnUmn(ρ) cos (mϑ− nϕ+Ωmnt+ χmn) , (5.1)

where Ωmn is the frequency of the (m,n)−th mode and χmn is its phase. The quantities
Bmn are the amplitudes of MHD modes and the functions Umn(ρ) describe the radial
profiles of the modes. In (5.1) ϑ is the poloidal angle in which the field lines are linear
functions of the toroidal angle ϕ: ϑ = ϕ/q(ρ) + ϑ0.

The radial profiles of MHD modes Umn(ρ) in realistic tokamak plasmas is less known.
As will be shown in Sec. 7.2 the structure of magnetic field lines is less sensitive to the
form of the radial profile of MHD modes. Only requirement is that the amplitudes Umn(ρ)
should vanish at the magnetic axis ρ = 0, i.e., Umn(0) = 0. We choose the following model
for the radial dependence of the functions Umn that satisfies this condition:

Umn =

[
1− exp

(
−

ρ2

2a2∆

)]
, (5.2)

where ∆ is a constant parameter.

The perturbation poloidal flux ψ
(1)
ϕ = −RA

(1)
ϕ /B0R

2
0 is given by

ψ(1)
ϕ (R,Z, ϕ, t) =

∑

mn

m−1bmnUmn(ρ) cos (mϑ− nϕ+ ωmnt+ χmn) . (5.3)

One can introduce a dimensionless perturbation parameter ǫMHD as

ǫMHD = max

∣∣∣∣
Bmn
B0

∣∣∣∣ = max |bmn| , (5.4)

where bmn = Bmn/B0 are the normalized amplitudes of MHD modes. For example, for
ǫMHD = 7.0× 10−5 and B0 =2.5 T we have Bmn = 1.75× 10−4 T= 1.75 G.

5.2. Model of the DED magnetic perturbations

Below we briefly describe the magnetic perturbations created by the DED coils of the
TEXTOR (see, (Finken et al. 2005) and Appendix A in (Abdullaev 2014)). It consists of
12 helical conductors installed on the inboard side of the TEXTOR vessel. The sketch of
the DED coil configuration in the poloidal section is shown in Fig. 7. The corresponding
perturbation magnetic field can be approximated by the toroidal component of the vector
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n φ̃n ιn

1 3π/16 sin(π/4)/[4 sin(π/16)]
2 3π/8 1/ [2 sin(π/8)]
4 5π/4

√
2

Table 1. Coefficients φh and ιn for the different n.

potential,

A(DED)
ϕ (R,Z, ϕ) = −

BcR
2
0

R

∑

m

m−1amn(r) cos (mθ + nϕ+ φn − Ωt) . (5.5)

The coefficient amn determined by the geometrical configuration of coils is given by

amn(r) = ιn

√
R0

R

rcgmnR

R2
0

(
r

rc

)|m|

,

gmn = (−1)mCm
sin[(m+ nm0/4)θc]

(m+ nm0/4)π
,

Cm =
sin[(m+ nm0/4)∆θ/2]

(m+ nm0/4)∆θ/2
. (5.6)

It describes the poloidal mode spectrum at the given toroidal mode n. In Eq. (5.5) the
quantity Bc = µ0m0Ided/πrc is the characteristic magnitude of the DED magnetic field,
Ided is the DED current, the constant m0 determines the central poloidal mode number
nm0/4, rc is the minor radius of the DED coils, and Ω is the rotation frequency of the
perturbation field.

In (5.5) (r, θ, ϕ) are the quasi-toroidal coordinates related to the cylindrical coordinates
R,Z as r =

√
(R−Ro)2 + Z2 and θ = arctan(Z/[R−R0]). In a toroidal system the angle

θ does not coincide with the poloidal ϑ. The relation between ϑ and the geometrical angle
θ, i.e., ϑ = ϑ(θ; ρ) depends on the equilibrium plasma. In a toroidal system the relation
between ϑ and θ can be presented by a series in powers of the inverse aspect ratio
ε = ρ/R0 (see Ch. 2 in (Abdullaev 2014) for more details). In the first order we have

ϑ = θ + a1ε sin θ + · · · , (5.7)

where a1 = −(2 + Λ). [For βpol = 0, li = 1.2 one has a1 = −1.6.]

The toroidal mode number n takes the value n = 4 for the so–called 12/4 operational
mode, n = 2 for the 6/2 mode, and n = 1 for the 3/1 mode, respectively. The depen-
dencies of the coefficients gmn on m in these operational modes are plotted in Fig. 2
The radial decay of the radial component of the perturbation field Br = −r−1∂Aϕ/∂θ in

these modes is proportional to (r/rc)
nm0/4. The phases φn and the factor ιn in Eq. (5.5)

are determined by the coil configuration. For the particular configuration they given by

φn =
m0n

4
(π − θ0)− φ̃n +

π

2
, (5.8)

where θ0 is a poloidal angle of the first coil at the section ϕ = 0. The coefficients φ̃n and
ιn for the different values ofn are given in Table 1.

Similar to (5.3) and (5.4)) one can also introduce the perturbation poloidal flux ψ(1)
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Figure 2. Dependence of the coefficients gmn on the mode number m in the three different
operational modes: 3/1 mode (curve 1), 6/2 mode (curve 2), and 12/4 mode (curve 3).

and the dimension perturbation parameter ǫMHD,

ǫDED =
Bc
B0

=
µom0Ided
πrcB0

. (5.9)

The parameters rc, θc, θ0, ∆θ, and m0 are determined by the geometry of coil config-
uration, and take fixed values, rc = 0.5325 m, θc = 35.49◦, θ0 = 169.35◦, ∆θ = 17.745◦,
and m0 ≈ 20.

This model of the DED fields well describes the qualitative and quantitative features
of heat deposition patterns observed in the TEXTOR–DED experiments (Jakubowski
et al. 2006; Finken et al. 2005).

6. Dynamics of REs in the toroidal plasmas

6.1. The equations of motion in action–angle variables

Below we present the equations of GC motion in the action–angle variables (Sec. 5.2
in (Abdullaev 2014)). Such a formulation allows one to better understand the effect of
magnetic perturbations on electrons and magnetic field lines.
In the absence of non-axisymmetric perturbations, i.e., ǫ = 0, the Hamiltonian func-

tions (2.3), (2.5) do not explicitly depend on the toroidal angle ϕ, i.e., H = H0(z, pz, pϕ),
[K = K(z, pz, E)]. In this case field lines and particle guiding center trajectories lie on
the toroidal surfaces (or drift surfaces) defined by H(z, pz, E) =const and pϕ =const,
respectively. To describe such a motion one can introduce the action–angle variables
(ϑz, ϑϕ, J, Iϕ) associated with the canonical variables (z, ϕ, pz, pϕ):

J =
1

2π

∮

Cz

pz(z;hc, pϕ)dz, Iϕ = pϕ,

ϑ =
∂S

∂J
, ϑϕ =

∂S

∂Iϕ
, (6.1)

determined by the generating function,

S = S(z, ϕ, J, Iϕ) = ϕIϕ +

∫ z

pz(z
′;hc, Iϕ)dz

′. (6.2)

The integrals in (6.1) and (6.2) ares taken along the closed contour Cz formed by the
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Figure 3. Closed contours Cz of orbits in the (z, pz) plane. Curve 1–3 correspond to RE with
different energies: 1 − E = 10 keV, 2 − E = 40 MeV, and 3 − E = 42.5 MeV The plasma
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projection of the drift orbit in the (z, pz)− plane as shown in Fig. 3.
In the action–angle variables the Hamiltonian H depends on the action variables

(J, Iϕ),H = H0(J, Iϕ). The unperturbed motion is characterized by the poloidal, ω(J, Iϕ) =
∂H0/∂J , and the toroidal, ωϕ(J, Iϕ) = ∂H0/∂Iϕ, frequencies of the conditionally-periodic
motion on the drift surface, known as transit oscillations (or bounce oscillations). The
particle trajectories (z(t), pz(t), ϕ(t), pϕ) are 2π−periodic functions of the angle variables
ϑz, ϑϕ:

z(ϑz, J, Iϕ) = z(ϑz + 2π, J, Iϕ),

pz(ϑz, J, Iϕ) = pz(ϑz + 2π, J, Iϕ),

ϕ(ϑz, ϑϕ, J, Iϕ) = ϕ(ϑz + 2π, ϑϕ + 2π, J, Iϕ). (6.3)

Particularly, the relation between the toroidal angle ϕ and the angle variables is given
by

ϕ = ϑϕ +G(ϑz, J, Iϕ), (6.4)

where G(ϑz, J, Iϕ) is the 2π−periodic function of ϑz. The angle variables ϑz, ϑϕ are the
linear functions of time

ϑz = ωz(J, Iϕ)t+ ϑz0,

ϑϕ = ωϕ(J, Iϕ)t+ ϑϕ0. (6.5)

For passing particles one introduce the quantity similar to the safety factor q(ψ). It is
called the effective safety factor qeff and is defined as the ratio of the increment of the
toroidal angle ϕ per one poloidal turn, i.e., qeff = ∆ϕ/2π. From (6.5) it follows that
qeff = ωϕ(J, Iϕ)/ωz(J, Iϕ) and it depends on the particle energy.

One should note the dependence of the effective safety factor qeff on the particle en-
ergy. For low–energy electrons qeff coincides with the safety factor q(ρ) of the equilibrium
magnetic field. With increasing the electron energy the effective safety factor strongly
deviates from q(ρ). Particularly, with approaching RE energy E to the critical energy
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Ecr of the separatrix the transit time T as well as qeff diverge as

T =∝ ln
B

|E − Ecr|
, qeff ∝ ln

C

|E − Ecr|
, (6.6)

where B and C are constant coefficients.

6.2. Effect of magnetic perturbations on GC orbits

In the presence of magnetic perturbations, given, for instance, by (5.1) or (5.5), the
action variables are not constants of motion. Their time–evolution are described by the
perturbed Hamiltonian equations

dϑz
dt

=
∂H

∂J
,

dJ

dt
= −

∂H

∂ϑz
,

dϑϕ
dt

=
∂H

∂Iϕ
,

dIϕ
dt

= −
∂H

∂ϑϕ
, (6.7)

with the Hamiltonian H(ϑz, ϑϕ, J, Iϕ, t) depending on the all canonical variables and
time. In tokamaks the magnetic perturbations are small in compared to the main equi-
librium field. In this case it is convenient to present the Hamiltonian H is a sum

H = H0(J, Iϕ) + ǫH1(ϑz, ϑϕ, J, Iϕ, t), (6.8)

where

H1(ϑz, ϑϕ, J, Iϕ, t) ≈
Zq
γt

uϕψ
(1)

xc
, (6.9)

is the perturbation Hamiltonian, uϕ = (pϕ + Zqψ0)/xc, ǫ stands for the dimensionless
perturbation parameter ǫMHD (5.4) [or ǫDED (5.9)]. Since the perturbation are periodic
in poloidal and toroidal angles and in time it can be presented by a Fourier series

H1(ϑz, ϑϕ, J,Iϕ, t) =
∑

mn

Hmn(J, Iϕ) exp [i (mϑz − nϑϕ +Ωmnt)] . (6.10)

First we consider the MHD magnetic perturbations described in Sec. 5.1. Using the ex-
pansion (5.1) for the perturbation poloidal flux ψ(1), the Fourier components Hmn(J, Iϕ)
can reduced to the integrals of type

Hmn(J, Iϕ) = (2π)
−2
∫∫ 2π

0

dϑzdϑϕ
∑

m′n′

cm′n′ei(m
′ϑ−mϑz−n

′ϕ+nϑϕ), (6.11)

where the angles ϑ and ϕ associated with magnetic field lines are considered as functions
of ϑz and ϑϕ. Similar to (6.4) the relation between ϑ and ϑz can be also presented as

ϑ = ϑz + F (ϑz, J, pϕ), (6.12)

where F (ϑz, J, pϕ) is 2π−periodic function of ϑz. The functions F (ϑz, J, pϕ) andG(ϑz, J, pϕ)
depend on electron’s energy E and vanish at E → 0. The coefficients cmn are propor-
tional to the MHD mode amplitudes amn, i.e., cmn = (Zquϕ/xc)amn. They are not only
functions of (J, Iϕ) but also slowly varying functions of ϑz and ϑϕ.

For low energy electrons with energies less several MeVs the GC orbits are close to
the magnetic field lines, and one can approximate ϑz ≈ ϑ and ϑϕ ≈ ϕ. Then from (6.11)
it follows that Hmn(J, Iϕ) ≈ cmn(J, Iϕ), i.e., the perturbation spectra of low–energy
electrons are close the spectra of magnetic perturbations.

With increasing electron’s energy the relation and (6.12) between ϑ and ϑz become
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Figure 4. (a) RE orbits with different energies E and (b) spectrum of perturbations Hmn

corresponding to these orbits. Curves 1–8 correspond to RE energies 10 keV, 1 MeV, 10 MeV,
20 MeV, 30 MeV, 40 MeV, 42 MeV, and 42.8 MeV, respectively. Curve 9 corresponds to the
separatrix with the critical energy Ecr = 42.646 MeV. The plasma current Ip = 150 kA, the
toroidal field B0 = 2.5 T. The toroidal mode number n = 1.

strongly nonlinear, while the relation between toroidal angle ϕ and ϑϕ given by (6.4) is
almost linear. Thus the perturbation spectra of high–energy electrons Hmn(J, Iϕ) may
have much higher m-th harmonics than the spectra of magnetic perturbations amn with
the same toroidal mode number n.

Figures 4 (a) and (b) illustrates the dependence of the RE orbits and the perturbation
spectrum Hmn on the electron energy E. It is assumed that the magnetic perturbation
(5.1) contains only the single mode (m = 1, n = 1). One can see that with increasing
electron energy its orbit evolves from the circular form to the oval one shown by curves
1 to 7. When the energy exceed a certain critical energy Ecr the electron becomes un-
confined and strikes wall as shown by curve 8 in Fig. 4 (a). The separatrix (curve 9)
corresponds to the critical energy Ecr.

For the low energy electrons with E < 10 MeV the spectrum Hmn contains the pre-
dominant m = 1 mode. With increasing the energy the amplitudes Hmn of higher m also
grow and the poloidal spectrum Hmn in poloidal mode m becomes wider as shown in
Fig. 4 (b). For the spectrum Hmn one can obtain the following asymptotical formula for
the orbits close to the separatrix (see Sec. 3.4 in (Abdullaev 2014))

Hmn ∝
1

T
exp

(
−
mC

T

)
, (6.13)

where C is a finite constant, and the transit time T diverges as (6.6).
In the case of the DED magnetic perturbation described in Sec. 5.2 one obtains the

expressions for Hmn similar to (6.11) in which the variable ϑ should be replaced by the
geometrical angle θ. The latter should be considered as a function of ϑz. Unlike the
previous case the perturbation spectrum Hmn does not coincide cmn = (Zquϕ/xc)amn,
where amn is given by (5.6), for the both, for low–energy electrons and as for high–energy
electrons. It is because that the geometrical angle θ does not coincide with the poloidal
angle ϑ of magnetic field lines. For low–energy electrons the spectrum of perturbation
Hmn will be close to magnetic perturbations the features of which has been studied
in detail in Refs. (Finken et al. 2005; Abdullaev 2014). With increasing the energy of
particles the contribution of higher (m,n) mode harmonics of Hmn will grow.
Figure 5 shows the spectrum of perturbation Hmn in the case of the DED magnetic

perturbations with the toroidal modes n = 1 (a) and n = 2 (b) for the electron orbits in
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Figure 5. Spectrum of perturbations Hmn in the presence of the magnetic perturbations of the
DED field. Numbering of curves corresponding to the orbits in Fig. 4 (a). The plasma parameters
are also the same. The toroidal mode numbers n = 1 (a) and n = 2 (b).

Fig. 4 (a). As in the case of a single mode magnetic perturbation shown Fig. 4 (b) the
mode m = 1 has a highest amplitude since according to (5.6) it has a weak radial decay
Hmn ∝ r. However, with increasing the electron energy the amplitudes Hmn of higher
harmonics m > 1 grow and near the separatrix has the asymptotics (6.13) and (6.6).

6.3. Resonance interactions of REs with magnetic perturbations

From (6.10) it follows that a particle’s orbit is strongly affected near the resonant drift
surfaces determined by the condition,

mωz(J, Iϕ)− nωϕ(J, Iϕ) + Ωmn = 0. (6.14)

The particles near this resonant drift surface can be trapped into the island. Such particle
islands are shown in Fig. 6 (a) and (b).

The resonant condition (6.14) for the relativistic electrons in the presence of low–
frequency magnetic perturbations can be rewritten in a more simple form. Indeed, since
the frequency Ωmn ∼ 105 s−1 and ωz ≈ c/(2πqR0) ∼ 107 s−1 one can neglect the ratio
Ωmn/ωz ∼ 10−2 ≪ 1. Then we have

m− nqeff (J, Iϕ) = 0, (6.15)

which similar to the condition for resonant magnetic surfaces, but the safety factor q of
magnetic surfaces is replaced by the effective safety factor qeff (J, Iϕ) of drift surfaces.

Let Jmn, Iϕ be the value of J and Iϕ (or energy E) corresponding to the isolated
resonant surface (m,n). The width of the island ∆J,∆Iϕ along the variables J, Iϕ is
determined by the magnitude of Hmn(J, Iϕ) at the resonant drift surface and given by
(see Sec. 8.1 in (Abdullaev 2014))

∆J = mWmn, ∆Iϕ = nWmn, (6.16)

where

Wmn = 4
√
ǫ|Vmn/κmn|,

Vmn = Hmn (mJmn, Jϕ − nJmn) ,

κmn =

(
m
∂Ω̃

∂J
− n

∂Ω̃

∂Iϕ

)
,

Ω̃ = mωz(J, Iϕ)− nωϕ(J, Iϕ). (6.17)
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Figure 6. Poincaré sections of RE orbits in the (R,Z)-plane: Red dots correspond to RE orbits
with energies E = 1 MeV (a) and E = 30 MeV (b). The perturbation parameter ǫ = 4× 10−5,
the plasma currents Ip = 230 kA (a) and Ip = 150 kA (b), the toroidal field B0 = 2.5 T.

The quantity Jϕ = nJ +mIϕ is the integral of motion.
If there are several closely located islands in a system, they may overlap at the certain

level of magnetic perturbation which leads to the chaotic motion of particles. According
to (6.13) and (6.6) the spectrum of perturbations Hmn for particles of energy close to
the critical one Ecr becomes much wider while the distances δJ = |Jm+1 − Jm| between
resonances gets smaller which certainly leads to overlapping of these chains of islands. The
particles in the stochastic zone formed due to this process quickly loose the confinement
and hit the wall.

Examples of such stochastic zones are shown in Figs. 6 (b) and 7. Particularly, Figs.
7 (a)-(c) show how the structure of orbits evolves with the increase of particle energy.
Particles of 10 MeV energy interact with the (m = 1, n = 1) magnetic perturbations
forming a number of high–order isolated resonances shown in Fig. 7 (a). For particles
with higher energy these resonances overlap forming a stochastic zone open to the wall
(7 (b)-(d)).

7. Model of a stochastic magnetic field

Below we describe the model of magnetic field in the disruptive stage of a tokamak
plasma. This model will be used to study the stochastization of magnetic field lines due
to interaction of low mode number nonlinear MHD modes and to estimate a heat and
particle transport in the corresponding stochastic magnetic field.

7.1. Field line equations

Field lines are governed Hamiltonian field line equations

dϑ

dϕ
=

∂ψ

∂ψt
,

dψt
dϕ

= −
∂ψ

∂ϑ
, (7.1)

with the poloidal flux ψ ≡ ψ(ψt, ϑ, ϕ) is being the Hamiltonian function and the poloidal
angle ϑ and the toroidal flux ψt are being as the canonical coordinate and momenta.
The toroidal angle ϕ is an independent time–like variable. The poloidal flux ψ can be
presented as a sum of the unperturbed flux ψ0(ψt) of the equilibrium plasma and the
perturbation part ψ1(ψt, ϑ, ϕ) arising from the magnetic perturbations caused by the
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Figure 7. Poincaré sections of RE orbits in the (R,Z)-plane of the RE orbits in the presence
of the magnetic perturbations of the TEXTOR-DED. Electron energy: (a) E = 10 MeV; (b)
E = 20 MeV; (c) E = 30 MeV; for the n = 1 mode with the perturbation current Ided = 3 kA.;
(d) E = 30 MeV for the n = 2 mode with Ided = 7 kA; The plasma current Ip = 150 kA, the
toroidal field Bt = 2.4 T.

MHD modes,

ψ(ψt, ϑ, ϕ) = ψ0(ψt) + ψ1(ψt, ϑ, ϕ), (7.2)

ψ0(ψt) =

∫
dψt
q(ψt)

,

ψ1(ψt, ϑ, ϕ) =
∑

m,n

ǫmnUmn(ψt) cos (mϑ− nϕ+ χmn) .

The dimensionless parameters ǫmn stand for the relative magnitudes of magnetic pertur-
bations: ǫmn ∼ Bmn/B0, where Bmn is the amplitude of the MHD modes. The quantities
χmn describe the phases of magnetic perturbations.

Furthermore we use the toroidal flux ψt by normalizing to its value Ψa ≈ a2/2R2
0

at the plasma boundary ρ = a. Then the toroidal flux ψt = ρ2/a2 takes values in the
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interval [0, 1], where ρ is the minor radius and a is the plasma radius. For this setting
the relation between ǫmn and the amplitudes of the MHD modes ǫMHD bmn (5.2), (5.4)
is given by ǫmn = ǫMHDbmn/Ψa.

Furthermore we use the model (3.5) for the safety factor which in the flux variable ψt
is reduced to

q(ψt) = qa
ψt

1− (1− ψt)
qa/q0

, (7.3)

where q0 = q(0) is the value of safety factor at the magnetic axis ψt = 0, qa = q(a) is
the value of safety factor at the plasma boundary ψt = 1, (r = a), qb is the parameter.
This model for the safety factor fairly well describe the experiment in the TEXTOR
tokamak. The safety factor profiles for the different values of q0 for the full plasma
current Ip = 300 kA are given in Fig. 1 by curves 2.

7.2. Model of MHD modes

Now we turn to models for the amplitudes Umn(ψt) of the low mode number MHD
modes which causes a plasma disruption. The main requirement is that the magnetic
perturbations Umn(ψt) should go to zero at the magnetic axis ψt = 0 (or ρ = 0), i.e.,
Umn(ψt = 0) = 0. As we will see below the structure of magnetic field lines in the
presence of magnetic perturbations is mainly determined by the amplitudes of modes
Umn(ψt) at the resonant magnetic surfaces ψt = ψmn, it is less sensitive to the radial
profiles of Umn(ψt), i.e., on the form of dependence of Umn(ψt) on ψt. Below we consider
two models for the amplitudes Umn(ψt) satisfying the similar condition at the magnetic
axis but having different radial profiles.

The first simple model is given by

Umn(ψt) =
1

m

(
1− e−ψt/∆

)
, (7.4)

which is determined by only one parameter ∆. This radial profile corresponds to the
MHD mode profiles given by Eq. (5.2).

The several realistic models for the MHD modes have been proposed in literature
(see, e.g., (Igochine et al. 2006) and references therein). Below we use the model given
in Ref. (Constantinescu et al. 2008) (Eq. (9)) which has been reconstructed from ECE
measurements in the ASDEX tokamak. We rewrite it in the form

Umn(ψt) =
1

m





1

1− β

[
1− β

(
ψ̄t
)1/2] (

ψ̄t
)m/2

,

for ψ̄t ≤ 1,[
1− δ + δ

(
ψ̄t
)1/2] (

ψ̄t
)−(m+1)/2

,

for ψ̄t > 1,

(7.5)

where ψ̄t = ψt/ψmn. In this form the profiles mUmn(ρ) takes a unit value at the resonant
magnetic surface ψt = ψmn. The formula (7.5) depends on the parameters β and δ unlike
the original one which depends on the three parameters. Then the amplitude of modes
is given by the dimensionless perturbation parameters ǫmn.

Figure 8 (a) and (b) show the profiles of mUmn(ρ) for the models (7.4) and (7.5),
respectively, at the different values of ∆. The structure of field lines are mainly determined
by the values of mode amplitudes Umn at the resonant surfaces ψt = ψmn rather then
their radial profiles. It is illustrated in Fig. 9 by plotting Poincaré sections of field lines
for the two different radial profiles of Umn(ψt) given by (7.4) and (7.5) (see Fig. 8 (a),
(b)).
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Figure 9. Poincaré sections for the radial profiles of the MHD modes: blue dots corresponds
(7.4) (see also Fig. 8 (a)); red dots corresponds to (7.5) (see also Fig. 8 (b)). The parameters:
∆ = 0.001, ǫmn = 2× 10−3 (n = 1, 2, m = 1− 4), q0 = 0.9 and qa = 3.6.

The structure of majority magnetic islands is less sensitive to the radial profiles of
MHD modes. It is related with the fact in the pendulum approximation the form of the
nonlinear resonance created by the MHD modes is mainly determined by the values of
its amplitude Umn(ψt) at the resonant surfaces ψt = ψmn (see, for example, Sec. 8.1 in
Abdullaev (2014)). Only the structure of the mode n = 1,m = 1 depends on the radial
profile of Umn(ψt), especially at the region close to the magnetic axis. But the outer
region of the island is less dependent on the profile of Umn(ψt).

7.3. Possible structures of a stochastic magnetic field during plasma disruptions

Using the above model of magnetic field one can study possible structures of magnetic
field during plasma disruptions. It is believed that the plasma disruption is caused by
the large–scale magnetic stochasticity created by the interactions of nonlinearly excited
low-order (m,n) MHD modes: (1/1, 2/1, 3/2, 4/3, . . . ).

First we consider structures of magnetic field during plasma disruptions corresponding
to the plasma with a monotonic radial profile of the safety factor q(ψt) (7.3) shown in
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Fig. 1. Figures 10 (a)–(d) shows Poincaré sections of field lines in the presence several
low–order MHD modes and with the different amplitudes ǫ11 of the (m = 1, n = 1) mode.
The interaction of these modes leads to the strong chaotic behavior of field lines. At the
small amplitudes of the (m = 1, n = 1) mode, shown in Fig. 10 (a), the chaotic field
lines are formed only in outer region. The central plasma region is separated from the
chaotic region by the magnetic transport barrier formed between the magnetic surface
q = 1 and q = 5/3. The stochastic layer formed near the separatrix of the magnetic
island (m = 1, n = 1) is negligible small. With increasing ǫ11 the magnetic transport
barrier moves toward toward the plasma center and the width of the stochastic layer of
the the magnetic island (m = 1, n = 1) grows as shown in Fig. 10 (b). Starting from
the certain level of ǫ11 the transport barrier disappears and the stochastic layer of the
island (m = 1, n = 1) joins the outer chaotic zone (Fig. 10 (c)). The further increase of
ǫ11 shrinks the stability region of of the island (m = 1, n = 1) (Fig. 10 (d)).

Now we consider the plasmas with a reversed magnetic shear, i.e., with a non-monotonic

radial profile of the safety factor q(ψt). The formation of the stochastic zone in this case is
different from the case with the monotonic safety factor profile. The magnetic transport
barrier is formed near the so–called shearless magnetic surface where q(ψt) takes minimal
value. Such a magnetic surface is relatively stable even to large magnetic perturbations.
The latter does not shrink the shearless magnetic surface but only deforms it †.

To illustrate this we consider the plasma with the following safety factor profile

q(ρ) =
qm

1− b(ρ2 − ρ2m)2
, (7.6)

shown in Fig. 11 (a). Here qm is a minimal value of q(ρ), ρm is the shearless magnetic
surface, b is constant. The parameters ρm and b can be expressed through the values of
the safety factor at the magnetic axis q(0), the plasma edge q(a), and qm.

Poincaré sections of magnetic field lines are plotted in Fig. 11 (b)-(d) for the different
amplitudes of magnetic perturbations ǫmn with the radial profiles (7.4). As seen the
magnetic transport barrier (a red curve) located near the shearless magnetic surface
ρ = ρm does not shrink with the increase of perturbations.

In the cases shown in Figs. 10 (a), (b) and Fig. 11 (b)-(d) the central region of plasma
is confined and the radial transport of particles there is much small than in the chaotic
region. The acceleration of electrons in this confined region by the toroidal electric field
may lead to the formation of RE beams.

7.4. Collisional transport in a stochastic magnetic field

The transport of heat and charged particles in a stochastic magnetic field has been
studied since early 1970s in the numerous works (see Abdullaev (2013), Sec. 10.4 in
Abdullaev (2014) and Sec. 9.8 in White (2014) for references). In general this problem
has a three–dimensional nature because of the system’s asymmetry along poloidal and
toroidal directions in the presence of magnetic perturbations ((Runov et al. 2001; Feng
et al. 2008; Frerichs et al. 2012) and references therein). However, the problem can be
simplified when we are interested only in the radial transport averaged over poloidal
and toroidal angles. In this case the heat transport along the radial coordinate can
be characterized by only the radial heat conductivity coefficient χr which in turn is
determined by the radial diffusion coefficient Dr of electrons.
Below we calculate the diffusion coefficient Dr in a stochastic magnetic field during the

plasma disruption. For this we use the collisional test particle transport model described

† The detailed description such systems known as non-twist systems and references can be
found in monographs by Abdullaev (2006, 2014).
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Figure 10. Poincaré sections of field lines in a pre–disruption plasma caused by a several
MHD modes with the different amplitudes of the (m = 1, n = 1) mode: (a) ǫ11 = 10−3; (b)
ǫ11 = 2 × 10−3; (c) ǫ11 = 4 × 10−3; (d) ǫ11 = 8 × 10−3. The amplitudes of all other modes are
ǫmn = 4 × 10−3 (n = 1 − 3, m = 1 − 11). The safety factor at the magnetic axis is q(0) = 0.8
and at the plasma edge qa = 4.7.

in (Abdullaev 2013, 2014) (see also (Rax & White 1992)). In this model a collisional
particle motion in the presence of magnetic perturbations is considered as a random
walk process along field lines and random jumps across magnetic surfaces.

The numerical procedure of this process is carried out in a following way: a particle
moves freely along the field line with a step l after which it collides with other particle
with the probability p, (0 < p < 1). After the collision it changes the direction of motion
to the opposite one being simultaneously displaced to the distance δρ across a field
line. The probability p is determined by the mean free path λmfp: p = l/(l + λmfp),
while the displacement δρ is determined by the perpendicular diffusion coefficient χ⊥:
δρ =

√
2χ⊥/pv‖, where v‖ is a parallel velocity of a particle. The mean free path depends

of the plasma temperature Te and electrons λmfp = 8.5×1021Te/ne m, where the electron
temperature Te [in keV] and the density ne [in m−3]. One should that the temperature and
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Figure 11. The same as in Fig. 10 but for the plasma with the reverse magnetic shear. (a)
the safety factor profile q(ρ); The amplitudes of all MHD modes are equal: (b) ǫmn = 10−3;
(c) ǫmn = 5 × 10−3; (d) ǫmn = 10−2; The safety factor at the magnetic axis is q(0) = 4.5, the
minimal value qm = 2.1, and at the plasma edge qa = 8.0. The parameter ∆ in (7.4) is taken
equal to 0.5. Red curve corresponds to the unperturbed shearless magnetic surface ρ = ρm.

the density are local functions of the radial coordinate ρ: Te = Te(ρ) and ne = ne(ρ). The
parallel velocity v‖ can be taken equal to the electron thermal velocity vTe

=
√
kTe/me =

1.33× 107 T
1/2
e m/s, where k is the Boltzmann’s constant.

The calculations are performed by integrating the field line equations (7.1) using the
forward and the backward mapping procedures described in (Abdullaev 2013, 2006,
2014). The local diffusion coefficients Dr are found by fitting the dependence of the

second moment 〈(∆ρ)
2
〉 on time t by a linear function 2Drt at the initial growth range of

t. Figure 12 shows an example of the dependence of the local diffusion coefficient Dr of
electrons on the local temperature Te at the magnetic surface ρ = 0.71a in a stochastic
magnetic field shown in Fig. 10 (b).

As was shown in (Abdullaev 2013) the collisional diffusion coefficient Dr can be quite
well described by the empirical formula

χr(ρ, Te) =
v‖DFL(ρ)

1 + Lc/λmfp
, (7.7)

determined only by a few plasma parameters: the mean free path λmfp, the thermal
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Figure 12. Dependence of the local radial diffusion coefficients Dr on the electron temperature
Te at the magnetic surfaces ρ = 0.5a (curves 1) and ρ = 0.71a (curves 2). The plasma density
n = 2× 1019 m−3. The perturbation field parameters are the same as in Fig. 6 of the main text.
Symbols “◦” correspond to the numerical calculated Dr, red curves correspond to the empirical
formula (7.7) for Dr, and blue curves correspond to the formula Dr = α

√
T/(1 + β/T 2) with

the fitted coefficients α and β.

Ti [keV] Dp [m2/s] τp = a2/2Dp [s]

0.005 0.0986057 1.072
0.050 0.386249 2.739 ×10−1

0.100 1.01251 1.045 ×10−1

0.500 6.46228 1.637 ×10−2

1.000 9.51915 1.111 ×10−2

2.000 13.1030 8.074 ×10−3

4.000 17.8366 5.932 ×10−3

5.000 23.7424 4.456 ×10−3

10.00 27.0265 3.915 ×10−3

Table 2. Ambipolar diffusion coefficients Dp of particles and the diffusion times τp = a2/2Dp

from the stochastic zone at the different effective plasma temperatures. The plasma radius
a = 0.46 m.

velocity vTe
, the radial diffusion coefficient of field lines, DFL, and the characteristic

length Lc. The latter is an empirical parameter which has an order of the connection
length πqR0. As seen from Fig. 12 the empirical formula (red curve) well describes the
temperature dependence of Dr.

The particle transport in a stochastic magnetic field can be also treated in a similar
way. However, because of the ambipolarity of a particle transport instead of the thermal
velocities of electrons vTe

and ions vTi
=
√
kTi/mi in the test particle simulations one

should use the sound speed cs =
√
k(Te + γiTi)/mi where Ti is the ion temperature, mi

is the ion mass, and γi is the adiabatic index. This condition comes from the fact that
the loss rates of electrons and ions are equal.

In Table 2 we have listed the values of the ambipolar diffusion coefficients Dp and the
characteristic diffusion times τp = a2/2Dp of particles from the stochastic zone at the
different plasma temperatures Te = Ti.
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