Journal of Helmintology

Supplementary material

In vitro nematicidal activity of two ferrocenyl chalcones against larvae of

Haemonchus contortus (L₃) and Nacobbus aberrans (J₂)

Jaime Vázquez-Bravo^{a,*}, Liliana Aguilar-Marcelino^{b,*}, Gloria S. Castañeda-Ramírez^b,

Itzel De los Santos-Pérez^a, Rosa Elena Arroyo-Carmona^c, Sylvain Bernès^d, Ulises Hernández-Pareja^e, Olga Gómez-Rodríguez^f and Greta H. Rosas-Saito^g

^aColaborador del Laboratorio de Nuevos Materiales de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Col. Jardínes de San Manuel. C. P. 72570, Puebla, Pue., MEXICO.
^bLaboratorio de Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Carretera Federal Cuernavaca-Cuautla No. 8534 Col. Progreso, C. P. 62550, Jiutepec, Morelos, MEXICO.
^cFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Col. Jardínes de San Manuel. C. P. 72570, Puebla, Pue.,

MEXICO.

 ^dInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Col. Jardínes de San Manuel. C. P. 72570, Puebla, Pue., MEXICO.
 ^eCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de

Puebla, Edif. IC8 Complejo de Ciencias, Av. San Claudio y 18 Sur. Col. Jardínes de San Manuel. C. P. 72570, Puebla, Pue., MEXICO.

^fColegio de Postgraduados, Carretera México-Texcoco, Km. 36.5, Montecillo, Texcoco, Estado de México. MEXICO.

^gINECOL, A. C. Red de Estudios Moleculares Avanzados, Unidad de Microscopía Avanzada del Clúster Científico y Tecnológico BioMimic. Carretera Antigua a Coatepec No. 351, Col. El Haya, C. P. 91070, Xalapa, Ver., MEXICO.

*Corresponding Authors. E-mail address: aguilar.liliana@inifap.gob.mx; drjvazquezb@gmail.com

Table of Contents

1. Chemical characterization	3
2. General procedure for the preparation of FcC's 1 and 2	4
3. ¹ H and ¹³ C NMR for FcC-1	6
4. ¹ H and ¹³ C NMR for FcC-2	7
5. X-ray parameters for FcC-1	8
6. X-ray parameters for FcC-2	19

1. Chemical characterization

¹H NMR and ¹³C NMR spectra were recorded at 500 MHz and 125 MHz, respectively, in CDCl₃ using a Bruker Avance III Spectrometer. Chemical shifts (δ) are given in ppm and reported to the residual solvent peak (CHCl₃, 7.26 ppm and 77.16 ppm, respectively for ¹H and ¹³C). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (*J*, Hz) and integration. Analytical TLC was performed on silica gel 60 F₂₅₄ plates. Column chromatography was carried out on silica gel 60 (63-200 µm). IR spectra were obtained using an FT–IR spectrometer, Spectrum One, Perkin Elmer. Xray diffraction analysis was performed on a diffractometer STOE Stadivari using Ag-*K* α radiation (λ = 0.56083 Å) and equipped with a Pilatus-100 K detector. Melting points were measured using a Mel-Temp II apparatus and are uncorrected. Elemental analyses were recorded from a Euro EA elemental analyzer (C and H only). All reagents were purchased from Sigma-Aldrich (Toluca, MEXICO) and used without further purification.

2. General procedure for the preparation of FcC's 1 and 2.

A solution of acetylferrocene (0.99 g, 4.38 mmol), NaOH (0.35 g, 8.76 mmol) and the corresponding benzaldehyde derivative (4.38 mmol) was refluxed during 4-5 h in 25 mL of EtOH. After cooling, the solvent was evaporated under reduced pressure to give the crude product as a red solid. This crude product was dissolved in 22 mL of AcOEt and transferred to a separatory funnel; then 25 mL of distilled water was added and the mixture was shaken vigorously. The mixture was allowed to stand undisturbed for ten minutes and the organic layer was separated. The extraction from the aqueous solution was repeated twice with 12 mL of AcOEt and the light red organic extracts were collected, dried over Na₂SO₄ and rotaevaporated under reduced pressure. Finally, the crude product was purified by column chromatography using Silica-gel (grade 60, 70–230 mesh) and a mixture of 9:1 hexanes–ethyl acetate as mobile phase. FcC's **1** and **2** were obtained in almost quantitative yields.

(2*E*)-1-ferrocenyl-3-(3-chlorophenyl)prop-2-en-1-one, FcC **1**.

Red solid (97 % yield). M.p. 131–133 °C. FT–IR ν_{max}/cm^{-1} : 1657 (C=O), 1598 (C=C). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.74 (d, 1H, *J* = 15.0 Hz), 7.64–7.35 (m, 4H), 7.13 (d, 1H, *J* = 15 Hz), 4.93 (m, 2H), 4.63 (m, 2H), 4.22 (s, 5H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 192.6, 139.1, 137.0, 134.9, 130.2, 129.9, 127.5, 126.8, 124.1, 80.4, 73.0, 70.2, 69.7. Anal. Calcd. for C₁₉H₁₅ClFeO (%): C 65.09; H 4.31. Found (%): C 65.14; H 4.25.

(2*E*)-1-ferrocenyl-3-(3-methylphenyl)prop-2-en-1-one, FcC 2.

Red solid (95 % yield). M.p. 139–141 °C. FT–IR ν_{max}/cm^{-1} : 1652 (C=O), 1598 (C=C). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.79 (d, 1H, *J* = 15 Hz), 7.47–7.22 (m, 4H), 7.14 (d, 1H, *J* = 15 Hz), 4.93 (m, 2H), 4.60 (m, 2H), 4.22 (s, 5H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 193.0, 141.0, 138.6, 135.1, 130.9, 128.8, 128.8, 125.4, 122.7, 80.6, 72.7, 70.1, 69.7, 21.4. Anal. Calcd. for C₂₀H₁₈FeO (%): C 72.75; H 5.49. Found (%): C 72.64; H 5.31.

Fig. S1. ¹H (top) and ¹³C NMR (bottom) for (2*E*)-1-ferrocenyl-3-(3-chlorophenyl)prop-2-en-1-one, FcC 1.

Table S1. Crystal data and structure refinement for FcC-1.

Identification code	JVB-9-Fe	
Empirical formula	C19 H15 Cl Fe O	
Formula weight	350.61	
Temperature	293(2) K	
Wavelength	0.56083 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 5.8022(3) Å	<i>α</i> = 90°.
	b = 10.5286(5) Å	β= 90°.
	c = 25.5874(12) Å	$\gamma = 90^{\circ}.$
Volume	1563.11(13) Å ³	
Z	4	
Density (calculated)	1.490 Mg/m ³	
Absorption coefficient	0.591 mm ⁻¹	
F(000)	720	
Theta range for data collection	1.977 to 20.517°.	
Index ranges	-7<=h<=7, -13<=k<=13,	-31<=l<=31
Reflections collected	42477	

Independent reflections	3196 [R(int) = 0.0951]
Completeness to theta = 19.664°	99.9 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3196 / 0 / 199
Goodness-of-fit on F ²	1.019
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1175
R indices (all data)	R1 = 0.0595, wR2 = 0.1257
Absolute structure parameter	0.08(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.971 and -0.246 e.Å ⁻³

	х	у	Z	U(eq)
Fe(1)	5177(1)	4980(1)	4128(1)	48(1)
Cl(1)	5508(4)	7735(2)	7786(1)	95(1)
O(1)	1012(6)	4912(4)	5261(2)	73(1)
C(1)	3764(8)	3957(5)	4719(2)	51(1)
C(2)	2993(9)	4573(5)	5202(2)	57(1)
C(3)	4730(9)	4752(5)	5618(2)	59(1)
C(4)	4236(9)	5362(5)	6055(2)	56(1)
C(5)	5765(9)	5580(5)	6500(2)	52(1)
C(6)	5043(10)	6402(4)	6889(2)	56(1)
C(7)	6440(10)	6630(5)	7317(2)	63(1)
C(8)	8529(10)	6048(6)	7377(2)	70(2)
C(9)	9232(10)	5209(5)	6992(2)	69(1)
C(10)	7900(8)	4991(6)	6555(2)	59(1)
C(11)	2381(9)	3849(5)	4261(2)	56(1)
C(12)	3752(12)	3309(5)	3862(2)	63(2)
C(13)	5995(11)	3089(5)	4063(2)	63(1)
C(14)	6001(10)	3486(4)	4590(2)	55(1)
C(15)	5574(12)	6805(5)	4382(3)	76(2)
C(16)	4117(13)	6772(6)	3941(3)	79(2)
C(17)	5370(14)	6242(6)	3527(3)	84(2)
C(18)	7589(12)	5955(6)	3713(3)	78(2)
C(19)	7705(10)	6307(5)	4239(3)	70(2)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for FcC-1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Fe(1)-C(14)	2.025(5)
Fe(1)-C(1)	2.028(5)
Fe(1)-C(18)	2.035(6)
Fe(1)-C(17)	2.036(5)
Fe(1)-C(15)	2.041(5)
Fe(1)-C(11)	2.041(5)
Fe(1)-C(16)	2.041(6)
Fe(1)-C(19)	2.045(5)
Fe(1)-C(13)	2.053(5)
Fe(1)-C(12)	2.061(6)
Cl(1)-C(7)	1.758(6)
O(1)-C(2)	1.213(7)
C(1)-C(11)	1.424(7)
C(1)-C(14)	1.427(7)
C(1)-C(2)	1.466(8)
C(2)-C(3)	1.479(7)
C(3)-C(4)	1.320(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.463(7)
C(4)-H(4)	0.9300
C(5)-C(6)	1.383(7)
C(5)-C(10)	1.393(7)
C(6)-C(7)	1.383(8)
C(6)-H(6)	0.9300
C(7)-C(8)	1.367(8)
C(8)-C(9)	1.384(8)
C(8)-H(8)	0.9300
C(9)-C(10)	1.378(8)
C(9)-H(9)	0.9300
C(10)-H(10)	0.9300
C(11)-C(12)	1.414(8)
C(11)-H(11)	0.9300
C(12)-C(13)	1.419(9)
C(12)-H(12)	0.9300
C(13)-C(14)	1.412(8)
C(13)-H(13)	0.9300

Table S3. Bond lengths [Å] and angles [°] for FcC-1.

C(14)-H(14)	0.9300
C(15)-C(19)	1.392(9)
C(15)-C(16)	1.411(10)
C(15)-H(15)	0.9300
C(16)-C(17)	1.400(10)
C(16)-H(16)	0.9300
C(17)-C(18)	1.406(10)
C(17)-H(17)	0.9300
C(18)-C(19)	1.396(10)
C(18)-H(18)	0.9300
C(19)-H(19)	0.9300
C(14)-Fe(1)-C(1)	41.2(2)
C(14)-Fe(1)-C(18)	122.3(2)
C(1)-Fe(1)-C(18)	159.2(2)
C(14)-Fe(1)-C(17)	159.3(3)
C(1)-Fe(1)-C(17)	158.7(3)
C(18)-Fe(1)-C(17)	40.4(3)
C(14)-Fe(1)-C(15)	121.3(3)
C(1)-Fe(1)-C(15)	108.0(2)
C(18)-Fe(1)-C(15)	67.3(3)
C(17)-Fe(1)-C(15)	67.7(3)
C(14)-Fe(1)-C(11)	68.7(2)
C(1)-Fe(1)-C(11)	41.0(2)
C(18)-Fe(1)-C(11)	158.1(3)
C(17)-Fe(1)-C(11)	123.4(3)
C(15)-Fe(1)-C(11)	125.9(3)
C(14)-Fe(1)-C(16)	157.9(3)
C(1)-Fe(1)-C(16)	123.0(3)
C(18)-Fe(1)-C(16)	67.6(3)
C(17)-Fe(1)-C(16)	40.2(3)
C(15)-Fe(1)-C(16)	40.5(3)
C(11)-Fe(1)-C(16)	109.8(3)
C(14)-Fe(1)-C(19)	106.3(2)
C(1)-Fe(1)-C(19)	123.4(2)
C(18)-Fe(1)-C(19)	40.0(3)
C(17)-Fe(1)-C(19)	67.6(3)
C(15)-Fe(1)-C(19)	39.8(3)

C(11)-Fe(1)-C(19)	161.0(3)
C(16)-Fe(1)-C(19)	67.5(3)
C(14)-Fe(1)-C(13)	40.5(2)
C(1)-Fe(1)-C(13)	68.8(2)
C(18)-Fe(1)-C(13)	106.7(3)
C(17)-Fe(1)-C(13)	124.0(3)
C(15)-Fe(1)-C(13)	155.8(3)
C(11)-Fe(1)-C(13)	68.4(2)
C(16)-Fe(1)-C(13)	161.2(3)
C(19)-Fe(1)-C(13)	120.5(2)
C(14)-Fe(1)-C(12)	67.9(2)
C(1)-Fe(1)-C(12)	68.3(2)
C(18)-Fe(1)-C(12)	122.3(3)
C(17)-Fe(1)-C(12)	109.2(3)
C(15)-Fe(1)-C(12)	162.7(3)
C(11)-Fe(1)-C(12)	40.3(2)
C(16)-Fe(1)-C(12)	126.2(3)
C(19)-Fe(1)-C(12)	156.5(3)
C(13)-Fe(1)-C(12)	40.4(2)
C(11)-C(1)-C(14)	107.2(4)
C(11)-C(1)-C(2)	123.8(5)
C(14)-C(1)-C(2)	128.7(5)
C(11)-C(1)-Fe(1)	70.0(3)
C(14)-C(1)-Fe(1)	69.3(3)
C(2)-C(1)-Fe(1)	121.1(3)
O(1)-C(2)-C(1)	121.6(5)
O(1)-C(2)-C(3)	121.3(5)
C(1)-C(2)-C(3)	117.1(4)
C(4)-C(3)-C(2)	121.6(5)
C(4)-C(3)-H(3)	119.2
C(2)-C(3)-H(3)	119.2
C(3)-C(4)-C(5)	127.2(5)
C(3)-C(4)-H(4)	116.4
C(5)-C(4)-H(4)	116.4
C(6)-C(5)-C(10)	118.4(5)
C(6)-C(5)-C(4)	118.3(5)
C(10)-C(5)-C(4)	123.2(5)
C(5)-C(6)-C(7)	120.0(5)

C(5)-C(6)-H(6)	120.0
C(7)-C(6)-H(6)	120.0
C(8)-C(7)-C(6)	122.1(5)
C(8)-C(7)-Cl(1)	119.5(5)
C(6)-C(7)-Cl(1)	118.4(5)
C(7)-C(8)-C(9)	117.8(5)
C(7)-C(8)-H(8)	121.1
C(9)-C(8)-H(8)	121.1
C(10)-C(9)-C(8)	121.2(5)
C(10)-C(9)-H(9)	119.4
C(8)-C(9)-H(9)	119.4
C(9)-C(10)-C(5)	120.4(5)
C(9)-C(10)-H(10)	119.8
C(5)-C(10)-H(10)	119.8
C(12)-C(11)-C(1)	108.0(5)
C(12)-C(11)-Fe(1)	70.6(3)
C(1)-C(11)-Fe(1)	69.0(3)
C(12)-C(11)-H(11)	126.0
C(1)-C(11)-H(11)	126.0
Fe(1)-C(11)-H(11)	126.0
C(11)-C(12)-C(13)	108.6(5)
C(11)-C(12)-Fe(1)	69.1(3)
C(13)-C(12)-Fe(1)	69.6(3)
C(11)-C(12)-H(12)	125.7
C(13)-C(12)-H(12)	125.7
Fe(1)-C(12)-H(12)	127.2
C(14)-C(13)-C(12)	107.5(5)
C(14)-C(13)-Fe(1)	68.7(3)
C(12)-C(13)-Fe(1)	70.1(3)
C(14)-C(13)-H(13)	126.2
C(12)-C(13)-H(13)	126.2
Fe(1)-C(13)-H(13)	126.5
C(13)-C(14)-C(1)	108.7(5)
C(13)-C(14)-Fe(1)	70.8(3)
C(1)-C(14)-Fe(1)	69.5(3)
C(13)-C(14)-H(14)	125.7
C(1)-C(14)-H(14)	125.7
Fe(1)-C(14)-H(14)	125.6

C(19)-C(15)-C(16)	108.2(6)
C(19)-C(15)-Fe(1)	70.3(3)
C(16)-C(15)-Fe(1)	69.8(3)
C(19)-C(15)-H(15)	125.9
C(16)-C(15)-H(15)	125.9
Fe(1)-C(15)-H(15)	125.6
C(17)-C(16)-C(15)	107.7(6)
C(17)-C(16)-Fe(1)	69.7(3)
C(15)-C(16)-Fe(1)	69.8(3)
C(17)-C(16)-H(16)	126.2
C(15)-C(16)-H(16)	126.2
Fe(1)-C(16)-H(16)	125.9
C(16)-C(17)-C(18)	107.7(6)
C(16)-C(17)-Fe(1)	70.1(3)
C(18)-C(17)-Fe(1)	69.7(3)
C(16)-C(17)-H(17)	126.1
C(18)-C(17)-H(17)	126.1
Fe(1)-C(17)-H(17)	125.6
C(19)-C(18)-C(17)	108.3(6)
C(19)-C(18)-Fe(1)	70.4(3)
C(17)-C(18)-Fe(1)	69.9(3)
C(19)-C(18)-H(18)	125.9
C(17)-C(18)-H(18)	125.9
Fe(1)-C(18)-H(18)	125.4
C(15)-C(19)-C(18)	108.1(6)
C(15)-C(19)-Fe(1)	69.9(3)
C(18)-C(19)-Fe(1)	69.6(3)
C(15)-C(19)-H(19)	125.9
C(18)-C(19)-H(19)	125.9
Fe(1)-C(19)-H(19)	126.2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	45(1)	44(1)	55(1)	6(1)	-3(1)	-2(1)
Cl(1)	100(1)	107(1)	77(1)	-31(1)	8(1)	-1(1)
O(1)	51(2)	96(3)	72(2)	-7(2)	-1(2)	6(2)
C(1)	51(3)	47(2)	56(2)	8(2)	2(2)	-6(2)
C(2)	53(3)	59(3)	58(3)	6(2)	0(2)	-2(2)
C(3)	53(3)	68(3)	56(2)	1(2)	-3(2)	8(2)
C(4)	47(3)	58(3)	63(3)	8(2)	2(2)	2(2)
C(5)	52(3)	49(2)	55(2)	9(2)	4(2)	-4(2)
C(6)	52(3)	56(3)	61(2)	3(2)	5(2)	2(2)
C(7)	64(3)	68(3)	57(3)	-4(3)	11(2)	-9(3)
C(8)	67(4)	80(4)	64(3)	4(3)	-9(3)	-9(3)
C(9)	57(3)	74(4)	77(3)	10(3)	-6(2)	6(3)
C(10)	54(3)	58(3)	65(3)	1(3)	3(2)	1(3)
C(11)	48(3)	55(3)	64(3)	7(2)	-2(2)	-14(2)
C(12)	72(4)	55(3)	61(3)	-5(2)	-5(3)	-11(3)
C(13)	70(3)	47(3)	73(3)	-2(2)	8(3)	3(2)
C(14)	61(3)	44(2)	60(3)	10(2)	-6(2)	1(2)
C(15)	80(5)	41(2)	105(5)	-6(3)	7(4)	-7(3)
C(16)	62(4)	53(3)	123(6)	30(3)	-6(4)	4(3)
C(17)	99(5)	72(3)	80(4)	37(3)	-12(4)	-20(4)
C(18)	68(4)	69(4)	96(4)	20(3)	17(3)	-9(3)
C(19)	54(3)	58(3)	98(4)	4(3)	-14(3)	-17(3)

Table S4. Anisotropic displacement parameters (Å²x 10³) for FcC-1. The anisotropic displacementfactor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)
H(3)	6206	4428	5571	71
H(4)	2752	5689	6082	67
H(6)	3618	6801	6862	67
H(8)	9448	6210	7667	85
H(9)	10629	4786	7029	83
H(10)	8431	4447	6295	71
H(11)	845	4090	4230	67
H(12)	3264	3128	3524	75
H(13)	7236	2747	3881	76
H(14)	7253	3446	4817	66
H(15)	5179	7106	4712	91
H(16)	2597	7051	3927	95
H(17)	4831	6105	3189	100
H(18)	8776	5592	3520	93
H(19)	8984	6224	4455	84

Table S5. Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^{\ 3}$) for FcC- 1.

Table S6. Torsion angles [°] for FcC-1.

C(11)-C(1)-C(2)-O(1)	8.2(8)
C(14)-C(1)-C(2)-O(1)	-178.8(5)
Fe(1)-C(1)-C(2)-O(1)	93.8(6)
C(11)-C(1)-C(2)-C(3)	-172.4(4)
C(14)-C(1)-C(2)-C(3)	0.5(7)
Fe(1)-C(1)-C(2)-C(3)	-86.8(5)
O(1)-C(2)-C(3)-C(4)	-4.6(8)
C(1)-C(2)-C(3)-C(4)	176.0(5)
C(2)-C(3)-C(4)-C(5)	178.5(4)
C(3)-C(4)-C(5)-C(6)	170.5(5)
C(3)-C(4)-C(5)-C(10)	-10.2(8)
C(10)-C(5)-C(6)-C(7)	0.6(7)
C(4)-C(5)-C(6)-C(7)	179.9(5)
C(5)-C(6)-C(7)-C(8)	-1.2(8)
C(5)-C(6)-C(7)-Cl(1)	177.2(4)
C(6)-C(7)-C(8)-C(9)	0.1(9)
Cl(1)-C(7)-C(8)-C(9)	-178.3(4)
C(7)-C(8)-C(9)-C(10)	1.6(9)
C(8)-C(9)-C(10)-C(5)	-2.3(8)
C(6)-C(5)-C(10)-C(9)	1.1(7)
C(4)-C(5)-C(10)-C(9)	-178.1(5)
C(14)-C(1)-C(11)-C(12)	0.5(5)
C(2)-C(1)-C(11)-C(12)	174.7(5)
Fe(1)-C(1)-C(11)-C(12)	60.0(4)
C(14)-C(1)-C(11)-Fe(1)	-59.6(3)
C(2)-C(1)-C(11)-Fe(1)	114.7(5)
C(1)-C(11)-C(12)-C(13)	-0.6(6)
Fe(1)-C(11)-C(12)-C(13)	58.5(4)
C(1)-C(11)-C(12)-Fe(1)	-59.1(3)
C(11)-C(12)-C(13)-C(14)	0.5(6)
Fe(1)-C(12)-C(13)-C(14)	58.7(4)
C(11)-C(12)-C(13)-Fe(1)	-58.2(4)
C(12)-C(13)-C(14)-C(1)	-0.2(6)
Fe(1)-C(13)-C(14)-C(1)	59.4(3)
C(12)-C(13)-C(14)-Fe(1)	-59.6(4)
C(11)-C(1)-C(14)-C(13)	-0.2(5)

C(2)-C(1)-C(14)-C(13)	-174.1(5)
Fe(1)-C(1)-C(14)-C(13)	-60.2(3)
C(11)-C(1)-C(14)-Fe(1)	60.0(3)
C(2)-C(1)-C(14)-Fe(1)	-113.9(5)
C(19)-C(15)-C(16)-C(17)	0.4(7)
Fe(1)-C(15)-C(16)-C(17)	-59.6(4)
C(19)-C(15)-C(16)-Fe(1)	60.0(4)
C(15)-C(16)-C(17)-C(18)	-0.2(7)
Fe(1)-C(16)-C(17)-C(18)	-59.8(4)
C(15)-C(16)-C(17)-Fe(1)	59.7(4)
C(16)-C(17)-C(18)-C(19)	-0.1(7)
Fe(1)-C(17)-C(18)-C(19)	-60.2(4)
C(16)-C(17)-C(18)-Fe(1)	60.1(4)
C(16)-C(15)-C(19)-C(18)	-0.5(7)
Fe(1)-C(15)-C(19)-C(18)	59.3(4)
C(16)-C(15)-C(19)-Fe(1)	-59.7(4)
C(17)-C(18)-C(19)-C(15)	0.4(7)
Fe(1)-C(18)-C(19)-C(15)	-59.5(4)
C(17)-C(18)-C(19)-Fe(1)	59.8(4)

Table S7.	Crystal	data an	d structure	refinement	for	FcC-2	2.
-----------	---------	---------	-------------	------------	-----	-------	----

Identification code	JVB-10-Fe	
Empirical formula	C20 H18 Fe O	
Formula weight	330.19	
Temperature	295(1) K	
Wavelength	0.56083 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 28.5538(16) Å	$\alpha = 90^{\circ}$.
	b = 5.9183(2) Å	$\beta = 110.119(4)^{\circ}.$
	c = 19.7317(11) Å	$\gamma = 90^{\circ}$.
Volume	3131.0(3) Å ³	
Z	8	
Density (calculated)	1.401 Mg/m ³	
Absorption coefficient	0.505 mm ⁻¹	
F(000)	1376	
Theta range for data collection	2.398 to 20.518°.	
Index ranges	-35<=h<=35, -7<=k<=7, -24<=l<=24	
Reflections collected	54422	
Independent reflections	6415 [R(int) = 0.0889]	
Completeness to theta = 19.664°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6415 / 0 / 400	
Goodness-of-fit on F ²	0.969	
Final R indices [I>2sigma(I)]	R1 = 0.0470, wR2 = 0.1043	
R indices (all data)	R1 = 0.0627, wR2 = 0.1087	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.509 and -0.269 e.Å ⁻³	

	X	у	Z	U(eq)
Fe(1)	6879(1)	11368(1)	10934(1)	42(1)
O(1)	6507(1)	15500(5)	9362(2)	60(1)
C(1)	7012(2)	12664(7)	10065(2)	40(1)
C(2)	6608(2)	13465(7)	9429(3)	47(1)
C(3)	6344(2)	11803(7)	8878(2)	47(1)
C(4)	5979(2)	12411(7)	8269(2)	44(1)
C(5)	5720(2)	11021(6)	7647(2)	43(1)
C(6)	5328(2)	11955(8)	7099(3)	49(1)
C(7)	5091(2)	10819(8)	6458(3)	56(1)
C(8)	5259(2)	8646(8)	6383(3)	63(1)
C(9)	5642(2)	7695(8)	6935(3)	56(1)
C(10)	5880(2)	8847(7)	7548(3)	51(1)
C(11)	7257(2)	14013(7)	10701(3)	51(1)
C(12)	7588(2)	12647(9)	11192(3)	55(1)
C(13)	7566(2)	10415(8)	10930(3)	54(1)
C(14)	7213(2)	10426(8)	10228(2)	48(1)
C(15)	6128(2)	11110(9)	10698(3)	62(1)
C(16)	6335(2)	12477(9)	11307(4)	69(2)
C(17)	6684(2)	11169(10)	11839(3)	70(2)
C(18)	6690(2)	9035(8)	11549(3)	60(1)
C(19)	6349(2)	8970(7)	10844(3)	60(1)
C(20)	4679(2)	11927(11)	5852(3)	82(2)
Fe(2)	8150(1)	8245(1)	9033(1)	40(1)
O(51)	8466(1)	4115(5)	7764(2)	58(1)
C(51)	7966(2)	6881(7)	8033(2)	44(1)
C(52)	8360(2)	6112(6)	7758(2)	42(1)
C(53)	8615(2)	7848(7)	7470(2)	43(1)
C(54)	8994(2)	7349(6)	7254(2)	43(1)
C(55)	9262(2)	8790(6)	6911(2)	42(1)
C(56)	9675(2)	7918(7)	6769(2)	45(1)
C(57)	9912(2)	9131(8)	6381(3)	52(1)
C(58)	9744(2)	11281(8)	6152(3)	56(1)
C(59)	9341(2)	12226(8)	6290(3)	53(1)

 $\label{eq:second} \begin{array}{l} \mbox{Table S8. Atomic coordinates (x\,10^4$) and equivalent} & \mbox{isotropic displacement parameters (\mathring{A}^2x$\,10^3$)} \\ \mbox{for FcC-2. } U(eq) \mbox{ is defined as one third of the trace of the orthogonalized U^{ij} tensor.} \end{array}$

C(60)	9095(2)	10981(7)	6670(2)	46(1)
C(61)	7769(2)	5514(7)	8468(3)	47(1)
C(62)	7442(2)	6899(7)	8703(3)	57(1)
C(63)	7437(2)	9084(7)	8409(3)	51(1)
C(64)	7765(2)	9082(7)	8003(2)	45(1)
C(65)	8912(2)	8615(7)	9442(3)	59(1)
C(66)	8749(2)	7129(8)	9880(3)	59(1)
C(67)	8415(2)	8264(9)	10132(3)	66(1)
C(68)	8365(2)	10538(8)	9857(3)	58(1)
C(69)	8674(2)	10702(7)	9428(3)	61(1)
C(70)	10331(2)	8099(10)	6190(4)	79(2)

Fe(1)-C(14)	2.018(4)
Fe(1)-C(18)	2.029(5)
Fe(1)-C(1)	2.030(4)
Fe(1)-C(15)	2.036(5)
Fe(1)-C(19)	2.037(5)
Fe(1)-C(11)	2.042(4)
Fe(1)-C(16)	2.042(5)
Fe(1)-C(13)	2.045(5)
Fe(1)-C(17)	2.048(5)
Fe(1)-C(12)	2.054(4)
O(1)-C(2)	1.235(5)
C(1)-C(14)	1.435(6)
C(1)-C(11)	1.447(6)
C(1)-C(2)	1.461(7)
C(2)-C(3)	1.467(6)
C(3)-C(4)	1.342(6)
C(3)-H(3)	0.9300
C(4)-C(5)	1.451(6)
C(4)-H(4)	0.9300
C(5)-C(6)	1.377(6)
C(5)-C(10)	1.402(5)
C(6)-C(7)	1.387(7)
C(6)-H(6)	0.9300
C(7)-C(8)	1.398(7)
C(7)-C(20)	1.509(7)
C(8)-C(9)	1.372(8)
C(8)-H(8)	0.9300
C(9)-C(10)	1.351(7)
C(9)-H(9)	0.9300
C(10)-H(10)	0.9300
C(11)-C(12)	1.363(7)
C(11)-H(11)	0.9300
C(12)-C(13)	1.412(7)
C(12)-H(12)	0.9300
C(13)-C(14)	1.404(6)
C(13)-H(13)	0.9300

Table S9. Bond lengths [Å] and angles [°] for FcC-2.

C(14)-H(14)	0.9300
C(15)-C(19)	1.400(6)
C(15)-C(16)	1.400(8)
C(15)-H(15)	0.9300
C(16)-C(17)	1.405(8)
C(16)-H(16)	0.9300
C(17)-C(18)	1.389(7)
C(17)-H(17)	0.9300
C(18)-C(19)	1.397(7)
C(18)-H(18)	0.9300
C(19)-H(19)	0.9300
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
Fe(2)-C(64)	2.012(4)
Fe(2)-C(51)	2.026(4)
Fe(2)-C(67)	2.037(5)
Fe(2)-C(69)	2.039(4)
Fe(2)-C(68)	2.043(5)
Fe(2)-C(63)	2.046(5)
Fe(2)-C(66)	2.046(5)
Fe(2)-C(61)	2.051(4)
Fe(2)-C(65)	2.055(5)
Fe(2)-C(62)	2.061(4)
O(51)-C(52)	1.219(5)
C(51)-C(64)	1.416(6)
C(51)-C(61)	1.428(6)
C(51)-C(52)	1.479(6)
C(52)-C(53)	1.480(6)
C(53)-C(54)	1.327(6)
C(53)-H(53)	0.9300
C(54)-C(55)	1.458(6)
C(54)-H(54)	0.9300
C(55)-C(56)	1.401(6)
C(55)-C(60)	1.407(5)
C(56)-C(57)	1.383(7)
C(56)-H(56)	0.9300
C(57)-C(58)	1.380(7)

C(57)-C(70)	1.504(7)
C(58)-C(59)	1.388(7)
C(58)-H(58)	0.9300
C(59)-C(60)	1.400(7)
C(59)-H(59)	0.9300
C(60)-H(60)	0.9300
C(61)-C(62)	1.435(7)
C(61)-H(61)	0.9300
C(62)-C(63)	1.416(6)
C(62)-H(62)	0.9300
C(63)-C(64)	1.428(6)
C(63)-H(63)	0.9300
C(64)-H(64)	0.9300
C(65)-C(69)	1.405(6)
C(65)-C(66)	1.418(7)
C(65)-H(65)	0.9300
C(66)-C(67)	1.392(7)
C(66)-H(66)	0.9300
C(67)-C(68)	1.440(7)
C(67)-H(67)	0.9300
C(68)-C(69)	1.422(7)
C(68)-H(68)	0.9300
C(69)-H(69)	0.9300
C(70)-H(70A)	0.9600
C(70)-H(70B)	0.9600
C(70)-H(70C)	0.9600
C(14)-Fe(1)-C(18)	120.7(2)
C(14)-Fe(1)-C(1)	41.53(17)
C(18)-Fe(1)-C(1)	158.03(19)
C(14)-Fe(1)-C(15)	122.1(2)
C(18)-Fe(1)-C(15)	67.1(2)
C(1)-Fe(1)-C(15)	108.9(2)
C(14)-Fe(1)-C(19)	105.1(2)
C(18)-Fe(1)-C(19)	40.2(2)
C(1)-Fe(1)-C(19)	122.61(19)
C(15)-Fe(1)-C(19)	40.21(19)
C(14)-Fe(1)-C(11)	69.17(18)
C(18)-Fe(1)-C(11)	157.9(2)
C(18)-Fe(1)- $C(11)$	157.9(2)

41.64(18)
127.0(2)
161.6(2)
159.4(2)
67.2(2)
124.7(2)
40.2(2)
67.8(2)
111.15(19)
40.43(18)
105.5(2)
69.01(18)
156.1(2)
119.49(19)
68.19(18)
160.1(3)
156.9(2)
39.8(2)
160.7(2)
67.4(2)
67.7(2)
124.3(2)
40.2(2)
122.5(2)
67.2(2)
123.0(2)
67.4(2)
162.6(2)
156.5(2)
38.9(2)
126.8(2)
40.3(2)
110.2(2)
106.2(4)
129.0(4)
124.6(4)
68.8(2)
69.6(3)

C(2)-C(1)-Fe(1)	121.8(3)
O(1)-C(2)-C(1)	119.7(4)
O(1)-C(2)-C(3)	122.2(4)
C(1)-C(2)-C(3)	118.1(4)
C(4)-C(3)-C(2)	121.8(4)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(5)	128.3(4)
C(3)-C(4)-H(4)	115.9
C(5)-C(4)-H(4)	115.9
C(6)-C(5)-C(10)	118.4(4)
C(6)-C(5)-C(4)	118.5(4)
C(10)-C(5)-C(4)	122.8(4)
C(5)-C(6)-C(7)	122.1(4)
C(5)-C(6)-H(6)	118.9
C(7)-C(6)-H(6)	118.9
C(6)-C(7)-C(8)	117.8(5)
C(6)-C(7)-C(20)	121.0(5)
C(8)-C(7)-C(20)	121.2(5)
C(9)-C(8)-C(7)	120.1(5)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(10)-C(9)-C(8)	121.5(5)
C(10)-C(9)-H(9)	119.2
C(8)-C(9)-H(9)	119.2
C(9)-C(10)-C(5)	120.0(5)
C(9)-C(10)-H(10)	120.0
C(5)-C(10)-H(10)	120.0
C(12)-C(11)-C(1)	107.4(4)
C(12)-C(11)-Fe(1)	71.1(3)
C(1)-C(11)-Fe(1)	68.7(2)
C(12)-C(11)-H(11)	126.3
C(1)-C(11)-H(11)	126.3
Fe(1)-C(11)-H(11)	125.4
C(11)-C(12)-C(13)	111.2(4)
C(11)-C(12)-Fe(1)	70.1(3)
C(13)-C(12)-Fe(1)	69.5(3)
C(11)-C(12)-H(12)	124.4

C(13)-C(12)-H(12)	124.4
Fe(1)-C(12)-H(12)	127.8
C(14)-C(13)-C(12)	106.4(4)
C(14)-C(13)-Fe(1)	68.8(3)
C(12)-C(13)-Fe(1)	70.2(3)
C(14)-C(13)-H(13)	126.8
C(12)-C(13)-H(13)	126.8
Fe(1)-C(13)-H(13)	125.8
C(13)-C(14)-C(1)	108.8(4)
C(13)-C(14)-Fe(1)	70.8(3)
C(1)-C(14)-Fe(1)	69.7(2)
C(13)-C(14)-H(14)	125.6
C(1)-C(14)-H(14)	125.6
Fe(1)-C(14)-H(14)	125.5
C(19)-C(15)-C(16)	108.6(5)
C(19)-C(15)-Fe(1)	69.9(3)
C(16)-C(15)-Fe(1)	70.1(3)
C(19)-C(15)-H(15)	125.7
C(16)-C(15)-H(15)	125.7
Fe(1)-C(15)-H(15)	125.8
C(15)-C(16)-C(17)	107.7(5)
C(15)-C(16)-Fe(1)	69.7(3)
C(17)-C(16)-Fe(1)	70.1(3)
C(15)-C(16)-H(16)	126.2
C(17)-C(16)-H(16)	126.2
Fe(1)-C(16)-H(16)	125.6
C(18)-C(17)-C(16)	107.4(5)
C(18)-C(17)-Fe(1)	69.4(3)
C(16)-C(17)-Fe(1)	69.7(3)
C(18)-C(17)-H(17)	126.3
C(16)-C(17)-H(17)	126.3
Fe(1)-C(17)-H(17)	126.2
C(17)-C(18)-C(19)	109.4(5)
C(17)-C(18)-Fe(1)	70.8(3)
C(19)-C(18)-Fe(1)	70.2(3)
C(17)-C(18)-H(18)	125.3
C(19)-C(18)-H(18)	125.3
Fe(1)-C(18)-H(18)	125.3

C(18)-C(19)-C(15)	106.9(4)
C(18)-C(19)-Fe(1)	69.6(3)
C(15)-C(19)-Fe(1)	69.9(3)
C(18)-C(19)-H(19)	126.6
C(15)-C(19)-H(19)	126.6
Fe(1)-C(19)-H(19)	125.5
C(7)-C(20)-H(20A)	109.5
C(7)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(7)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(64)-Fe(2)-C(51)	41.05(17)
C(64)-Fe(2)-C(67)	161.5(2)
C(51)-Fe(2)-C(67)	156.3(2)
C(64)-Fe(2)-C(69)	106.5(2)
C(51)-Fe(2)-C(69)	124.5(2)
C(67)-Fe(2)-C(69)	68.6(2)
C(64)-Fe(2)-C(68)	123.40(19)
C(51)-Fe(2)-C(68)	161.0(2)
C(67)-Fe(2)-C(68)	41.3(2)
C(69)-Fe(2)-C(68)	40.8(2)
C(64)-Fe(2)-C(63)	41.18(18)
C(51)-Fe(2)-C(63)	68.86(18)
C(67)-Fe(2)-C(63)	124.6(2)
C(69)-Fe(2)-C(63)	120.31(19)
C(68)-Fe(2)-C(63)	106.35(19)
C(64)-Fe(2)-C(66)	156.5(2)
C(51)-Fe(2)-C(66)	122.1(2)
C(67)-Fe(2)-C(66)	39.9(2)
C(69)-Fe(2)-C(66)	67.7(2)
C(68)-Fe(2)-C(66)	68.1(2)
C(63)-Fe(2)-C(66)	161.6(2)
C(64)-Fe(2)-C(61)	68.99(18)
C(51)-Fe(2)-C(61)	41.00(18)
C(67)-Fe(2)-C(61)	121.1(2)
C(69)-Fe(2)-C(61)	162.3(2)
C(68)-Fe(2)-C(61)	156.01(19)

C(63)-Fe(2)-C(61)	68.37(18)
C(66)-Fe(2)-C(61)	109.14(19)
C(64)-Fe(2)-C(65)	120.50(19)
C(51)-Fe(2)-C(65)	108.09(19)
C(67)-Fe(2)-C(65)	68.0(2)
C(69)-Fe(2)-C(65)	40.15(17)
C(68)-Fe(2)-C(65)	68.26(19)
C(63)-Fe(2)-C(65)	155.62(19)
C(66)-Fe(2)-C(65)	40.46(19)
C(61)-Fe(2)-C(65)	126.16(18)
C(64)-Fe(2)-C(62)	68.9(2)
C(51)-Fe(2)-C(62)	69.0(2)
C(67)-Fe(2)-C(62)	107.6(2)
C(69)-Fe(2)-C(62)	155.2(2)
C(68)-Fe(2)-C(62)	120.0(2)
C(63)-Fe(2)-C(62)	40.34(18)
C(66)-Fe(2)-C(62)	125.9(2)
C(61)-Fe(2)-C(62)	40.85(19)
C(65)-Fe(2)-C(62)	163.11(19)
C(64)-C(51)-C(61)	108.0(4)
C(64)-C(51)-C(52)	128.0(4)
C(61)-C(51)-C(52)	123.6(4)
C(64)-C(51)-Fe(2)	69.0(2)
C(61)-C(51)-Fe(2)	70.4(3)
C(52)-C(51)-Fe(2)	120.3(3)
O(51)-C(52)-C(51)	120.8(4)
O(51)-C(52)-C(53)	121.6(4)
C(51)-C(52)-C(53)	117.6(4)
C(54)-C(53)-C(52)	122.1(4)
C(54)-C(53)-H(53)	118.9
C(52)-C(53)-H(53)	118.9
C(53)-C(54)-C(55)	129.5(4)
C(53)-C(54)-H(54)	115.3
C(55)-C(54)-H(54)	115.3
C(56)-C(55)-C(60)	118.9(4)
C(56)-C(55)-C(54)	119.3(4)
C(60)-C(55)-C(54)	121.7(4)
C(57)-C(56)-C(55)	121.7(4)

C(57)-C(56)-H(56)	119.2
C(55)-C(56)-H(56)	119.2
C(58)-C(57)-C(56)	118.6(4)
C(58)-C(57)-C(70)	120.6(5)
C(56)-C(57)-C(70)	120.8(4)
C(57)-C(58)-C(59)	121.7(4)
C(57)-C(58)-H(58)	119.2
C(59)-C(58)-H(58)	119.2
C(58)-C(59)-C(60)	119.7(4)
C(58)-C(59)-H(59)	120.1
C(60)-C(59)-H(59)	120.1
C(59)-C(60)-C(55)	119.5(4)
C(59)-C(60)-H(60)	120.3
C(55)-C(60)-H(60)	120.3
C(51)-C(61)-C(62)	107.8(4)
C(51)-C(61)-Fe(2)	68.6(2)
C(62)-C(61)-Fe(2)	69.9(2)
C(51)-C(61)-H(61)	126.1
C(62)-C(61)-H(61)	126.1
Fe(2)-C(61)-H(61)	127.0
C(63)-C(62)-C(61)	107.7(4)
C(63)-C(62)-Fe(2)	69.3(3)
C(61)-C(62)-Fe(2)	69.2(2)
C(63)-C(62)-H(62)	126.2
C(61)-C(62)-H(62)	126.2
Fe(2)-C(62)-H(62)	126.9
C(62)-C(63)-C(64)	108.4(4)
C(62)-C(63)-Fe(2)	70.4(3)
C(64)-C(63)-Fe(2)	68.2(3)
C(62)-C(63)-H(63)	125.8
C(64)-C(63)-H(63)	125.8
Fe(2)-C(63)-H(63)	127.2
C(51)-C(64)-C(63)	108.1(4)
C(51)-C(64)-Fe(2)	70.0(2)
C(63)-C(64)-Fe(2)	70.7(3)
C(51)-C(64)-H(64)	126.0
C(63)-C(64)-H(64)	126.0
Fe(2)-C(64)-H(64)	125.0

C(69)-C(65)-C(66)	107.4(5)
C(69)-C(65)-Fe(2)	69.3(3)
C(66)-C(65)-Fe(2)	69.4(3)
C(69)-C(65)-H(65)	126.3
C(66)-C(65)-H(65)	126.3
Fe(2)-C(65)-H(65)	126.5
C(67)-C(66)-C(65)	109.1(4)
C(67)-C(66)-Fe(2)	69.7(3)
C(65)-C(66)-Fe(2)	70.1(3)
C(67)-C(66)-H(66)	125.4
C(65)-C(66)-H(66)	125.4
Fe(2)-C(66)-H(66)	126.3
C(66)-C(67)-C(68)	107.9(5)
C(66)-C(67)-Fe(2)	70.4(3)
C(68)-C(67)-Fe(2)	69.6(3)
C(66)-C(67)-H(67)	126.1
C(68)-C(67)-H(67)	126.1
Fe(2)-C(67)-H(67)	125.6
C(69)-C(68)-C(67)	106.7(4)
C(69)-C(68)-Fe(2)	69.5(3)
C(67)-C(68)-Fe(2)	69.1(3)
C(69)-C(68)-H(68)	126.7
C(67)-C(68)-H(68)	126.7
Fe(2)-C(68)-H(68)	126.3
C(65)-C(69)-C(68)	108.8(4)
C(65)-C(69)-Fe(2)	70.5(3)
C(68)-C(69)-Fe(2)	69.8(3)
C(65)-C(69)-H(69)	125.6
C(68)-C(69)-H(69)	125.6
Fe(2)-C(69)-H(69)	125.7
C(57)-C(70)-H(70A)	109.5
C(57)-C(70)-H(70B)	109.5
H(70A)-C(70)-H(70B)	109.5
C(57)-C(70)-H(70C)	109.5
H(70A)-C(70)-H(70C)	109.5
H(70B)-C(70)-H(70C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	42(1)	45(1)	42(1)	-6(1)	16(1)	-3(1)
O(1)	71(2)	41(2)	62(2)	0(1)	17(2)	1(2)
C(1)	36(3)	42(2)	41(3)	0(2)	14(2)	-4(2)
C(2)	48(3)	50(3)	51(3)	-8(2)	28(2)	-8(2)
C(3)	50(3)	43(2)	49(3)	2(2)	20(2)	1(2)
C(4)	46(3)	42(2)	44(3)	2(2)	15(2)	2(2)
C(5)	41(2)	42(2)	47(3)	3(2)	17(2)	1(2)
C(6)	45(3)	52(2)	51(3)	5(2)	16(2)	1(2)
C(7)	46(3)	70(3)	52(3)	10(2)	15(2)	-8(2)
C(8)	67(4)	68(3)	55(3)	-13(2)	24(3)	-22(3)
C(9)	63(4)	46(2)	65(4)	-14(2)	31(3)	-11(2)
C(10)	51(3)	48(2)	57(3)	7(2)	22(2)	0(2)
C(11)	48(3)	45(2)	59(3)	-8(2)	18(2)	-9(2)
C(12)	42(3)	78(3)	41(3)	-12(2)	9(2)	-16(3)
C(13)	50(3)	65(3)	48(3)	-4(2)	16(2)	9(2)
C(14)	42(3)	61(3)	44(3)	-7(2)	19(2)	5(2)
C(15)	37(3)	82(3)	67(4)	10(3)	18(3)	0(2)
C(16)	73(4)	55(3)	106(5)	-4(3)	64(4)	0(3)
C(17)	76(4)	90(4)	54(3)	-16(3)	36(3)	-19(3)
C(18)	61(3)	57(3)	65(3)	12(2)	25(3)	-3(2)
C(19)	60(3)	54(2)	68(3)	-7(2)	25(3)	-11(2)
C(20)	62(4)	110(5)	56(4)	14(3)	-3(3)	-4(4)
Fe(2)	40(1)	42(1)	39(1)	1(1)	16(1)	-3(1)
O(51)	65(2)	47(2)	70(2)	-4(2)	33(2)	2(2)
C(51)	37(2)	56(2)	35(2)	-3(2)	9(2)	0(2)
C(52)	46(3)	41(2)	39(2)	-5(2)	13(2)	0(2)
C(53)	45(3)	43(2)	44(3)	1(2)	17(2)	4(2)
C(54)	46(3)	35(2)	45(3)	-1(2)	13(2)	-2(2)
C(55)	43(2)	44(2)	37(2)	-3(2)	10(2)	1(2)
C(56)	42(3)	44(2)	48(3)	-5(2)	14(2)	2(2)
C(57)	47(3)	59(3)	50(3)	-10(2)	16(2)	-7(2)
C(58)	57(3)	64(3)	50(3)	-4(2)	21(3)	-19(3)
C(59)	59(3)	43(2)	50(3)	-1(2)	9(3)	-4(2)

Table S10. Anisotropic displacement parameters (Å²x 10³) for FcC-2. The anisotropic displacementfactor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(60)	45(3)	43(2)	50(3)	-4(2)	15(2)	-2(2)
C(61)	50(3)	39(2)	55(3)	-5(2)	21(2)	-12(2)
C(62)	47(3)	71(3)	56(3)	11(3)	21(3)	-17(2)
C(63)	41(3)	56(2)	53(3)	-5(2)	14(2)	7(2)
C(64)	43(3)	47(2)	44(3)	4(2)	14(2)	1(2)
C(65)	43(3)	74(3)	56(3)	-11(3)	13(2)	1(2)
C(66)	57(3)	56(3)	53(3)	9(2)	5(3)	5(2)
C(67)	63(4)	94(4)	37(3)	-4(2)	15(3)	-5(3)
C(68)	59(3)	51(2)	62(3)	-15(2)	17(3)	-1(2)
C(69)	57(3)	47(2)	81(4)	-7(2)	26(3)	-13(2)
C(70)	65(4)	92(4)	94(5)	-14(3)	46(4)	-10(3)

	Х	У	Z	U(eq)
H(3)	6433	10287	8954	56
H(4)	5880	13915	8241	53
H(6)	5218	13394	7161	59
H(8)	5110	7843	5957	75
H(9)	5740	6223	6887	67
H(10)	6151	8198	7905	61
H(11)	7198	15533	10762	61
H(12)	7801	13123	11641	66
H(13)	7749	9181	11173	65
H(14)	7124	9188	9920	57
H(15)	5885	11550	10268	74
H(16)	6256	13981	11352	83
H(17)	6876	11644	12300	84
H(18)	6890	7836	11787	72
H(19)	6282	7740	10532	72
H(20A)	4377	11922	5964	123
H(20B)	4626	11108	5412	123
H(20C)	4771	13457	5794	123
H(53)	8505	9337	7440	52
H(54)	9105	5862	7331	51
H(56)	9793	6488	6939	54
H(58)	9904	12118	5898	67
H(59)	9235	13680	6132	64
H(60)	8823	11597	6762	56
H(61)	7840	3997	8579	57
H(62)	7265	6444	8997	69
H(63)	7252	10310	8470	61
H(64)	7835	10313	7760	54
H(65)	9136	8271	9208	70
H(66)	8849	5634	9981	71
H(67)	8253	7661	10427	79
H(68)	8168	11677	9943	69

Table S11. Hydrogen coordinates ($x\ 10^4)$ and isotropic displacement parameters (Å $^2x\ 10^{-3})$ for FcC-2.

H(69)	8713	11982	9179	73
H(70A)	10494	6965	6540	119
H(70B)	10567	9253	6188	119
H(70C)	10201	7421	5720	119

Table S12. Torsion angles [°] for FcC-2.

C(14)-C(1)-C(2)-O(1)	-175.4(4)
C(11)-C(1)-C(2)-O(1)	11.3(7)
Fe(1)-C(1)-C(2)-O(1)	97.3(4)
C(14)-C(1)-C(2)-C(3)	3.0(7)
C(11)-C(1)-C(2)-C(3)	-170.3(4)
Fe(1)-C(1)-C(2)-C(3)	-84.4(4)
O(1)-C(2)-C(3)-C(4)	0.3(7)
C(1)-C(2)-C(3)-C(4)	-178.0(4)
C(2)-C(3)-C(4)-C(5)	173.3(4)
C(3)-C(4)-C(5)-C(6)	175.0(5)
C(3)-C(4)-C(5)-C(10)	-11.4(7)
C(10)-C(5)-C(6)-C(7)	-0.2(7)
C(4)-C(5)-C(6)-C(7)	173.7(4)
C(5)-C(6)-C(7)-C(8)	0.9(7)
C(5)-C(6)-C(7)-C(20)	-177.0(5)
C(6)-C(7)-C(8)-C(9)	0.6(7)
C(20)-C(7)-C(8)-C(9)	178.4(5)
C(7)-C(8)-C(9)-C(10)	-2.8(8)
C(8)-C(9)-C(10)-C(5)	3.5(7)
C(6)-C(5)-C(10)-C(9)	-1.9(6)
C(4)-C(5)-C(10)-C(9)	-175.6(4)
C(14)-C(1)-C(11)-C(12)	1.5(5)
C(2)-C(1)-C(11)-C(12)	176.1(4)
Fe(1)-C(1)-C(11)-C(12)	60.9(3)
C(14)-C(1)-Fe(1)	-59.4(3)
C(2)-C(1)-C(11)-Fe(1)	115.2(4)
C(1)-C(11)-C(12)-C(13)	-2.2(6)
Fe(1)-C(11)-C(12)-C(13)	57.2(4)
C(1)-C(11)-C(12)-Fe(1)	-59.4(3)
C(11)-C(12)-C(13)-C(14)	2.0(6)
Fe(1)-C(12)-C(13)-C(14)	59.5(3)
C(11)-C(12)-C(13)-Fe(1)	-57.6(4)
C(12)-C(13)-C(14)-C(1)	-0.9(5)
Fe(1)-C(13)-C(14)-C(1)	59.5(3)
C(12)-C(13)-C(14)-Fe(1)	-60.5(3)
C(11)-C(1)-C(14)-C(13)	-0.3(5)

C(2)-C(1)-C(14)-C(13)	-174.6(4)
Fe(1)-C(1)-C(14)-C(13)	-60.2(3)
C(11)-C(1)-C(14)-Fe(1)	59.9(3)
C(2)-C(1)-C(14)-Fe(1)	-114.4(5)
C(19)-C(15)-C(16)-C(17)	-0.6(6)
Fe(1)-C(15)-C(16)-C(17)	-60.1(4)
C(19)-C(15)-C(16)-Fe(1)	59.5(4)
C(15)-C(16)-C(17)-C(18)	0.5(6)
Fe(1)-C(16)-C(17)-C(18)	-59.3(4)
C(15)-C(16)-C(17)-Fe(1)	59.8(4)
C(16)-C(17)-C(18)-C(19)	-0.3(6)
Fe(1)-C(17)-C(18)-C(19)	-59.8(4)
C(16)-C(17)-C(18)-Fe(1)	59.5(4)
C(17)-C(18)-C(19)-C(15)	-0.1(6)
Fe(1)-C(18)-C(19)-C(15)	-60.2(3)
C(17)-C(18)-C(19)-Fe(1)	60.2(4)
C(16)-C(15)-C(19)-C(18)	0.4(6)
Fe(1)-C(15)-C(19)-C(18)	60.1(3)
C(16)-C(15)-C(19)-Fe(1)	-59.7(4)
C(64)-C(51)-C(52)-O(51)	-173.4(4)
C(61)-C(51)-C(52)-O(51)	15.2(7)
Fe(2)-C(51)-C(52)-O(51)	100.7(5)
C(64)-C(51)-C(52)-C(53)	5.9(7)
C(61)-C(51)-C(52)-C(53)	-165.5(4)
Fe(2)-C(51)-C(52)-C(53)	-80.0(5)
O(51)-C(52)-C(53)-C(54)	-5.0(7)
C(51)-C(52)-C(53)-C(54)	175.7(4)
C(52)-C(53)-C(54)-C(55)	175.1(4)
C(53)-C(54)-C(55)-C(56)	176.0(5)
C(53)-C(54)-C(55)-C(60)	-8.9(7)
C(60)-C(55)-C(56)-C(57)	-1.8(6)
C(54)-C(55)-C(56)-C(57)	173.4(4)
C(55)-C(56)-C(57)-C(58)	2.1(7)
C(55)-C(56)-C(57)-C(70)	-175.7(5)
C(56)-C(57)-C(58)-C(59)	-1.1(7)
C(70)-C(57)-C(58)-C(59)	176.7(5)
C(57)-C(58)-C(59)-C(60)	-0.2(7)
C(58)-C(59)-C(60)-C(55)	0.5(7)

C(56)-C(55)-C(60)-C(59)	0.5(6)
C(54)-C(55)-C(60)-C(59)	-174.6(4)
C(64)-C(51)-C(61)-C(62)	0.2(5)
C(52)-C(51)-C(61)-C(62)	173.1(4)
Fe(2)-C(51)-C(61)-C(62)	59.1(3)
C(64)-C(51)-C(61)-Fe(2)	-58.9(3)
C(52)-C(51)-C(61)-Fe(2)	114.0(4)
C(51)-C(61)-C(62)-C(63)	0.5(6)
Fe(2)-C(61)-C(62)-C(63)	58.8(3)
C(51)-C(61)-C(62)-Fe(2)	-58.3(3)
C(61)-C(62)-C(63)-C(64)	-1.0(6)
Fe(2)-C(62)-C(63)-C(64)	57.7(3)
C(61)-C(62)-C(63)-Fe(2)	-58.7(3)
C(61)-C(51)-C(64)-C(63)	-0.8(5)
C(52)-C(51)-C(64)-C(63)	-173.3(4)
Fe(2)-C(51)-C(64)-C(63)	-60.7(3)
C(61)-C(51)-C(64)-Fe(2)	59.8(3)
C(52)-C(51)-C(64)-Fe(2)	-112.6(5)
C(62)-C(63)-C(64)-C(51)	1.2(5)
Fe(2)-C(63)-C(64)-C(51)	60.2(3)
C(62)-C(63)-C(64)-Fe(2)	-59.1(4)
C(69)-C(65)-C(66)-C(67)	0.1(6)
Fe(2)-C(65)-C(66)-C(67)	-59.0(4)
C(69)-C(65)-C(66)-Fe(2)	59.1(4)
C(65)-C(66)-C(67)-C(68)	-0.5(6)
Fe(2)-C(66)-C(67)-C(68)	-59.7(4)
C(65)-C(66)-C(67)-Fe(2)	59.2(4)
C(66)-C(67)-C(68)-C(69)	0.6(6)
Fe(2)-C(67)-C(68)-C(69)	-59.6(3)
C(66)-C(67)-C(68)-Fe(2)	60.2(4)
C(66)-C(65)-C(69)-C(68)	0.3(6)
Fe(2)-C(65)-C(69)-C(68)	59.5(3)
C(66)-C(65)-C(69)-Fe(2)	-59.2(4)
C(67)-C(68)-C(69)-C(65)	-0.6(6)
Fe(2)-C(68)-C(69)-C(65)	-59.9(3)
C(67)-C(68)-C(69)-Fe(2)	59.4(3)