Supporting Material for "Simulating the processes controlling ice-shelf rift paths using damage mechanics"

Alex HUTH,^{1,4} Ravindra DUDDU,² Benjamin SMITH,³ Olga SERGIENKO⁴

¹ NOAA/GFDL, Princeton, NJ, USA

² Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, USA

³ Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, WA, USA

⁴ Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

Contents of this file

Figure S1

Fig. S1. The final maximum principal damage fields, $\langle \bar{D}_1 \rangle$, upon calving, when running the five rifting simulations with the same damage stress threshold, $\sigma_{\rm th} = 0.154$ MPa. Here, the damage field is not as sharp or well-constrained to the rifting of interest as compared to Figure 8, where $\sigma_{\rm th}$ is adjusted to allow rifting while minimizing damage accumulation elsewhere. However, the same general rift paths are obtained with either approach.