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SUPPLEMENTARY MATERIAL 

 
Part 1. Numerical simula�ons of vibra�ng fixed-ends beam  

 
The 3D computa�on domain of round shape (𝑆𝑆) used in numerical simula�ons is shown in Fig. 
1. The radius and the thickness of the computa�on domain were respec�vely 10 m and 0.3 
m. The thickness of the computa�on domain equals the ice thickness ℎ𝑖𝑖. The fixed-ends beam 
is located between two parallel ver�cal cuts with round ends. The widths of the beam and the 
cuts were respec�vely 𝑤𝑤 = 0.27 m, and 𝑑𝑑 = 0.1 m (Fig. A1a). Numerical simula�ons were 
performed using Solid Mechanics and Structural Mechanics modules of finite element 
so�ware Comsol Mul�physics 5.4. Figure S2a shows physically controlled tetrahedral mesh 
with extra fine resolu�on used in the numerical simula�ons. Figure S2b shows the mesh in 
the vicinity of the ends of two parallel cuts and near the beam root.   
 
The ice rheology is described by isotropic elas�c material. Numerical simula�ons were 
performed to find eigen frequencies and to demonstrate that �me-dependent problem with 
specific boundary condi�on leads to the genera�on of the first eigen mode of flexural 
oscilla�ons of the beam. Elas�c rheology of ice is characterized by the elas�c modulus 𝐸𝐸, the 
Poisson’s ra�o 𝜈𝜈, and the ice density 𝜌𝜌𝑖𝑖. In the simula�ons the ice density was set to 𝜌𝜌𝑖𝑖 = 920 
kg/m3. It is known that eigen frequencies of bending oscilla�ons of elas�c beams are 
determined by the elas�c modulus and the beam geometry (Landau and Lifshitz, 1964). 
Therefore, in the simula�ons the Poisson’s ra�o was set to the constant value 𝜈𝜈 = 0.35.  
 
At the outer round face of domain 𝑆𝑆 low-reflec�ng boundary condi�on was set. Free surface 
boundary condi�on was set at the top surface of the computa�onal domain and at the lateral 
surfaces of the ver�cal cuts. In �me dependent simula�ons localized external loads were 
applied to the beam and to the ice to ini�ate ver�cal mo�on. The loads were applied over 
gray rectangles 𝑆𝑆𝑓𝑓 with sizes 0.1 m x 0.27 m (Fig. A1a). The loads increased linearly from 0 to 
1000 kg during 0.001 s and then dropped to 0. The loads applied to the beam and to the edge 
of ice plate were opposite directed. At the botom surface of computa�onal domain, the 
condi�on of spring founda�on with elas�c constant of 10000 N/m3 was used to imitate the 
buoyancy force ac�ng on the ice botom. In addi�on, the added mass condi�on with the 
added mass of 320.7 kg/m2 was used (Fig. A1b).  

 
 



 
Figure S1. Projec�on of computa�onal domain on horizontal (a) and ver�cal planes (b). 

 

a)     b)  
Figure S2. Physic-controlled mesh with extra fine resolu�on used in numerical simula�ons. 

 
Figure S3 shows results of the eigenfrequency study. Among many eigen modes of the 
computa�onal domain we selected the mode with maximal deforma�on of the fixed-ends 
beam in the center and minimal deforma�on of surrounded ice. Figure S3a shows the shape 
of such mode having eigen frequency 17.2+0.19𝑖𝑖 Hz along the 𝑥𝑥-axis. The eigen frequency is 
complex because low-reflec�ng boundary condi�on allows energy sink through the periphery 
face of the computa�onal domain.  The eigen mode was calculated with the elas�c modulus 
𝐸𝐸 = 1.1 GPa. Figure S3b shows the dependence of the elas�c modulus 𝐸𝐸 from the real part 
of the eigen frequency 𝑓𝑓.    

 

 



Figure S3. Shape of the first eigen mode of flexural oscilla�ons of the fixed-ends beam along 
the 𝑥𝑥-axis (a). Dependence of elas�c modulus from of the first eigen mode frequency (b). 
 
Figure S4 shows results of numerical simula�ons of the ini�al value problem. Blue line in 
Figure S4a shows normalized non-dimensional displacement of the beam center from �me. 
Yellow line in Figure S4a shows normalized non-dimensional displacement of the closest point 
at the ice edge cross the cut. Figure S4b shows the shape of the beam axis and surrounded 
ice along the 𝑥𝑥-axis in two �mes different on the half period of the oscilla�on.  One can see 
that the amplitude of ver�cal oscilla�ons of the beam center is much greater the amplitudes 
of ver�cal oscilla�ons of surrounded ice. Figure S5 shows spectrum of the graph in Fig. A4a. 
Spectral maximum is reached at 𝑓𝑓 ≈ 18 Hz what is higher than 17.2 Hz obtained for the eigen 
frequency. The difference can be explained by error accumula�on during numerical 
simula�ons of oscilla�ng solu�on of �me dependent problem, and finite dimensions of the 
computa�onal domain influencing many addi�onal eigen frequencies in addi�on to the eigen 
frequency of the fixed-ends beam in unlimited ice plate.    
 

Figure S4. Normalized ver�cal displacement of the beam center (blue line) and closest point 
at the ice edge (yellow line) versus �me calculated with 𝐸𝐸 = 1.1 GPa (a). Spectrum of the 
normalized ver�cal displacement (b).  
 

 
Figure S5. Spectrum of the normalized ver�cal displacement. 

 
  
  



Part 2. Calcula�on of added mass 
 
The added mass effect should be considered when the flexural oscilla�ons of floa�ng beams 
are calculated. The added mass per unit area of the beam surface is expressed by the integral 
(Marchenko et. al, 2020) 
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𝜋𝜋2 ∫ ∫ (sin𝑢𝑢)2 (sin𝑣𝑣)2

𝑢𝑢2𝑣𝑣2�(𝑢𝑢𝑤𝑤/𝐿𝐿)2+𝑣𝑣2
𝑑𝑑𝑑𝑑∞

0 𝑑𝑑𝑑𝑑∞
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Numerical calcula�ons using NIntegra�on in Wolfram Mathema�ca shows that 𝑚𝑚𝑎𝑎𝑎𝑎 = 320.7 
kg/m2 when 𝜌𝜌𝑤𝑤 = 1030 kg/m3, 𝐿𝐿 = 3 m, and 𝑤𝑤 = 27 cm. This value of the added mass was 
used in numerical simula�ons. 
 
The frequency dependence of added mass appears when the energy of oscilla�ons of a 
floa�ng/submerged body is radiated into surface and acous�c waves. Surface wave effect is 
important when there is free surface, and the frequency is low. For the high frequencies the  
dynamic boundary condi�on at the free surface turn to equality of the velocity poten�al 
zero (Newman, 2017, Fig. 6.22), and the added mass in the ver�cal direc�on is similar the 
added mass of a body in unlimited fluid.  Figure 6.23 in Newman (2017) es�mates frequency 
limit for the sphere with diameter 𝑑𝑑. The added mass is closed to the standard value 𝜋𝜋𝑑𝑑3/12 
when 𝜔𝜔2𝑑𝑑/𝑔𝑔 = 6. Assuming 𝑑𝑑 = 1 m we find that 𝜔𝜔/2𝜋𝜋 = 1.3 Hz. It is much lower the 
frequencies measured in the tests with fixed-ends beams. Radia�on of acous�c waves is 
important for bodies with very small mass submerged in a liquid with large density 
(Golyamina and Issakovitch M.A., 1981). 
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