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1 BAYESIAN INFERENCE APPROACH7

1.1 Gaussian processes8

Figure S1 graphically defines hyper-parameters σ (amplitude) and ` (correlation lengthscale) and illustrates9

the sensitivity of a Gaussian process to observations.10

1.2 Metropolis–Hastings Algorithm11

The posterior distributions of the variables have no closed form (Gelman and others, 1995), thus ne-12

cessitating that we approximate them. Following Brinkerhoff and others (2016) we do this using the13

Metropolis–Hastings Algorithm implemented through the python library pymc2 (Fonnesbeck and others,14

2015). This algorithm determines how steps are taken in parameter space. After a sufficient number of15

steps, the sampled distribution is considered a subset of the true posterior distribution.16

1.3 Defining hyper-parameters and model priors17

Hyper-parameter values (Table S1) are chosen to be realistic and representative of the study glacier, with18

these choices guided by real observational uncertainties. Due to inconsistencies between variables in the19

case of the real data, adjustment of the priors, in the form of increasing the observational variance, was20

necessary in order to achieve realistic results. For example, the prescribed variance of the surface-elevation21

change rate (ν∆S
∆t

) which exceeds observational uncertainty is used to minimize unrealistic inversion results22
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Fig. S1. Example of a Gaussian process and the influence of hyper-parameters. a) σ and ` influence random reali-

sations of the Gaussian process. (b) The mean and covariance of the Gaussian process are influenced by observations.
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Table S1. Hyper-parameters used in Bayesian inversion of real and synthetic data

Symbol Value Units Description

σB 250 m Bed-elevation amplitude

νB 25 m2 Variance, observed bed elevation

`B 1000 m Bed correlation lengthscale

σS 10 m Surface-elevation amplitude

νS 100 m2 Variance, observed surface elevation

σ9b 10 ma´1 Mass-balance amplitude

ν9b 100 m2 a´2 Variance, observed mass balance

σ∆S
∆t

10 ma´1 Surface-elevation change-rate amplitude

ν∆S
∆t

100 m2 a´2 Variance, observed surface-elevation change rate

` 3000 m Correlation lengthscale

νUs 50 m2 a´2 Variance, observed surface velocities

in the vicinity of the glacier terminus. The same hyper-parameter values are applied to inversions of real23

and synthetic data.24

The mean functions used to define the priors are as follows. Elevation change rate and ice thickness25

are taken as zero, with a positivity constraint on ice thickness. Flowband width is taken as uniform and26

equal to 0.5, while mass balance is prescribed to decline monotonically with flowline position on the basis27

of model output from Young and others (2021). Coefficient s is uniform across the domain, with the prior28

distribution defined as a truncated normal with lower and upper bounds of 1 and 1.25, respectively, a mean29

of 1 and standard deviation of 0.05. Prescribing a uniform rather than normal prior for s, as described in30

Brinkerhoff and others (2016), produced systematic biases in some inversions.31

1.4 Assessing model convergence32

Convergence is illustrated in Figure S2 with histograms of the Monte Carlo Markov Chains for two example33

bed posteriors. We compute at least three chains for every inversion, with at least 106 iterations, a burn-in34

period of 105 and a thinning factor of 10. We have found 106 iterations sufficient to obtain convergence in35

most cases, while the burn-in period and thinning factor were chosen to be conservative.36
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Fig. S2. Illustration of trace convergence, with histograms of the bed posterior shown for three traces at several

locations along the flowline. Histograms should be normal, and similar between traces at any given location. Corre-

sponding Gelman–Rubin statistics are shown at top. (a) Example synthetic bed posterior for inversion of data from

deformation-only (quiescent) regime. (b) Example synthetic bed posterior for inversion of data from high-slip (surge)

regime.

2 GENERATION OF SYNTHETIC DATA37

2.1 Reference glacier geometry38

The synthetic glacier geometry is derived from the site of interest in order for the synthetic results to be as39

instructive as possible. We begin by manually delineating an approximate flowline following the tributary40

involved in the 2018–2019 surge (Figure 1 in main text). We use the 30 m SRTM (Farr and others, 2007)41

Digital Elevation Model (DEM) contoured at 50 m for the purpose of delineating the flowline orthogonal to42

glacier surface contours. Our resulting flowline follows an OGGM generated flowline, without the abrupt43

changes in direction present in the OGGM (Maussion and others, 2019). We then extract glacier surface44

and bed profiles along the flowline at 10m intervals. The surface elevations come from the 30 m SRTM45

DEM, while bed elevations are based on the dataset of Farinotti and others (2019) (hereafter referred to46

as “F2019”) (Figure S3a). We smooth the surface and bed profiles with a fifth-order Savgol filter from the47

signal subpackage from scipy using a using a window of 211 points or 2110 m (Figure S3b).48

The F2019 ice-thickness model has systematic errors at the study location due, at least in part, to49

outdated glacier outlines. We attempt to manually correct these errors to create an accurate and stable50

synthetic reference geometry. Farinotti and others (2019) use the Randolph Glacier Inventory (RGI)51

version 6.0 outline (Consortium, 2017), which, in this case, includes the glacier of interest (dubbed “Little52
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Fig. S3. Generation of synthetic glacier geometry. (a) Raw topographic profiles extracted along flowline (Figure 1,

main text) at 10m intervals from 30m SRTM DEM (blue) and Farinotti and others (2019) (F2019) dataset (orange

and black). (b) Smoothed and corrected profiles. Upstream end of flowline is truncated where bed elevation exceeds

surface elevation after applying the correction. 2007 (pre-surge) terminus position is shown as dashed vertical line.

Kluane” in air photographs by Austin Post) as a tributary connected to the Kluane Glacier (RGI Glacier53

ID: 01.16198). This tributary, however, has retreated „3 km from its former confluence with the Kluane54

Glacier, meaning ice thickness is non-zero in the F2019 dataset over several kilometres of currently ice-free55

terrain.56

The mean ice thickness estimated by Farinotti and others (2019) in this ice-free region is 104 m. We57

make a crude correction to the reference glacier geometry by increasing the F2019 bed elevation everywhere58

by 104 m. We truncate the uppermost portion of the flowline by „1 km, where bed elevation exceeds surface59

elevation after applying the correction (Figure S3b). Hereafter, we refer to the smoothed and corrected60

profiles (Figure S3b) as the “reference” profiles. The synthetic beds used in the ice-flow model (below) are61

the sum of the reference bed and various sinusoidal perturbations, as described in the main text.62

2.2 Ice-flow model63

We use the open-source finite-element model Elmer/Ice (Gagliardini and others, 2013) to generate synthetic

glacier profiles, and associated surface elevations, elevation change rates and velocities, for different glacier
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beds. We solve the Stokes equations in two (x–z flowband) dimensions for incompressible flow:

∇ ¨ σ ` ρ g “ 0 (1)

∇ ¨ u “ 0, (2)

where ρ is ice density, g gravitational acceleration, u the ice velocity vector, and σ “ τ ´ p I the Cauchy

stress tensor with deviatoric stress tensor τ , isotropic pressure p and identity matrix I. To close the system

of equations above we use the Glen–Nye-type constitutive law for temperate ice

τ “ A´1{n 9εp1´nq{n
e 9ε, (3)

where A is the rate factor, 9εe the effective strain rate, 9ε the strain rate tensor and n “ 3 the stress exponent.

Effects of variable flowband width and lateral drag are neglected. We assume a stress-free surface boundary

such that

σ ¨ n “ 0, (4)

where n is unit vector normal to the boundary. The basal boundary condition is expressed as a linear

friction law

τb “ β ub, (5)

where τb is basal shear stress, β the slip coefficient and ub the sliding speed (Gagliardini and others, 2013).

All simulations are prognostic, meaning the free surface evolves according to

Bzs
Bt
` us

Bzs
Bx
´ ws “ 9b, (6)

where zs is surface elevation, us “ pus, wsq are the horizontal and vertical surface velocities, respectively,

obtained from the Stokes equations (1 and 2) and 9b is the surface mass balance described below. We assume

rigid, impenetrable bedrock of elevation zbpxq, thus Equation 6 must satisfy the inequality

zspx, tq ě zbpxq ` hmin, (7)

where hmin is a small non-zero ice thickness (10 m in this case) added to ice-free gridcells to facilitate the64

numerical treatment of this free-boundary problem (Gagliardini and others, 2013). Equations 1, 2 and 665
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Description Value Units

g Gravitational acceleration 9.8 m s´2

ρ Ice density 910 kg m´3

n Stress (Glen) exponent 3 –

A Rate Factor 5.016ˆ 10´24 Pa´3 s´1

Table S2. Physical constants and fixed model parameters used in Elmer/Ice simulations.
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Fig. S4. Surface mass balance of the real and synthetic study glaciers. (a) Mass balance as a function of elevation

as estimated using the model of Young and others (2021) (dots) with trained support vector regression (red line)

used to prescribe the surface mass balance for the ice-flow model. (b) Relative glacier volume per unit width for

the reference geometry over a 2 ka model spin-up for various offsets (colour) applied to the mass-balance–elevation

profile in (a). Values in ma´1 ice-equivalent. An offset of 2.01ma´1 ice-equivalent produces the steady-state closest

to unity in this case.

are solved on a rectangular mesh with 10 vertical layers and a horizontal grid spacing of 50 m.66

2.3 Surface mass balance67

We use the mass-balance model of Young and others (2021), developed for the nearby Kaskawulsh Glacier68

(roughly 30 km from the study glacier), to estimate the surface mass balance across the glacier of interest69

and its synthetic counterpart. This model uses downscaled and bias-corrected air temperatures and pre-70

cipitation from the North American Regional Reanalysis (NARR) dataset to estimate accumulation with71

a prescribed rain-to-snow threshold of 1˝C, and calculates ablation with the enhanced temperature-index72

model of Hock (1999) and a refreezing parameterization. The temperature-index model parameters are73
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tuned for the Kaskawulsh Glacier using the glacier-wide 2007–2018 geodetic balance, the average equilib-74

rium line altitude (ELA) and in-situ surface mass-balance data. The geodetic balance of the Kaskawulsh75

Glacier has been indistinguishable from the regional average over several decades (Berthier and others,76

2010), suggesting that this glacier may be regionally representative. We therefore use the model parame-77

ters tuned for the Kaskawulsh Glacier to simulate the surface mass balance of the glacier of interest from78

2007–2018 (blue dots, Figure S4a).79

We train a Support Vector Regression (SVR) with a radial basis kernel function using the 2007–2018

mean mass balance as a function of elevation with the scikit-learn python package (Pedregosa and

others, 2011, Figure S4a). SVR is an extension of support vector classification that uses only a subset

of the training data (i.e., the support vectors) to fit the model. A trained SVR model produces support

vectors, dual coefficients (i.e., weights) and an intercept, which are used for prediction. Since Elmer/Ice

boundary conditions must be prescribed in a FORTRAN function, we write the support vectors and weights

to disk and do not use the scikit-learn application program interface. Prediction with the trained SVR

model is done according to:

ŷpxq “
ÿ

iPSV

pαi ´ α
˚
i qKpx, xiq ` b, (8)

where ŷpxq is the predicted variable, SV are the support vectors, αi ´ α˚i are the dual coefficients (i.e.,

weights), b is the intercept, and K is the radial basis kernel function of the form

K “ expp´γ}x´ xi}
2q, (9)

where x is vector of positions where predictions are needed, xi is the ith support vector, and γ controls the80

influence of a single training sample. Optimal values for the hyperparameters C (an inverse regularization81

parameter) and γ were determined by cross validation.82

2.4 Steady-state simulations83

To produce self-consistent synthetic datasets that represent deformation-dominated (quiescent-like) glacier-

flow regimes, we first compute steady states for each bed shown in Figure 4.1. Because the glacier of interest

was not in steady state from 2007–2018, the prescribed mass-balance profile (Figure S4a) does not produce

a glacier of similar size to the observed. We therefore run a suite of simulations, driven by incremental

mass-balance offsets, for each glacier bed to obtain steady-state glaciers of similar size to the observed.
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Fig. S5. Synthetic glacier geometries for each bed profile (see main text). Steady-state glacier surface profiles

intended to represent quiescent flow regimes are shown in blue. Transient glacier surface profiles after 10 a of high

sliding intended to represent surge-like flow are shown in orange.
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Fig. S6. Relative glacier volume per unit width for the composite bed (Bsynth in main text) at the end of a 2 ka

model spin-up as a function of offsets applied to the mass-balance profile. Results for both initial conditions are

shown: (1) the observed reference profile (blue dots) and (2) the steady-state glacier profile (orange crosses). The

mass-balance offset (1.94 m a´1) t hat produces the steady-state glacier, for both initial conditions, is circled in black.

The reference geometry is initialized with the ice-surface topography shown in Figure S3b. We then use

the resulting steady-state glacier profile for the reference geometry as the initial condition for each of the

perturbed beds (see section below for more detail). All steady-state simulations are run with no sliding

(β “ 1 in sliding law, see main text). We test mass-balance offsets ranging from 1.90–2.05ma´1 in

increments of 0.01ma´1. We run all simulations for 2 ka and compute the relative glacier volume per unit

width (V 1) as:

V 1ptq “

řM
j“1Hpxj , tq ∆x

řM
j“1Hpxj , 0q ∆x

, (10)

where H is the ice thickness at position xj and time t, M is the number of horizontal gridcells in the84

model domain and ∆x is the horizontal gridcell spacing. The fictitious ice (of thickness hmin) mentioned in85

ice-flow model description is removed in the calculation of relative volume per unit width. For each glacier86

bed, we define the steady-state configuration as the result of the simulation that produces V 1 closest to87

unity. The steady-state glacier profiles for each bed (Figure 4.1), and their associated surface velocities,88

are used to represent quiescent flow regimes in the inversions of synthetic data.89
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2.4.1 Initial conditions90

For the perturbed bed steady-state simulations two natural choices arise for the initial condition: (1) the91

reference profile in Figure S3b based on observations or (2) the steady-state glacier profile that uses the92

reference profile as an initial condition. Figure S4b demonstrates a strong transient response, associated93

with the relaxation of the free-surface, during the first 500 a of a spin-up simulation initialized with (1).94

Using (2) instead avoids the free-surface relaxation, leading to shorter model run times required to achieve95

steady state: simulations using (2) reach steady state (defined as |dV 1{dt| ď 10´7) 40% faster than sim-96

ulations using (1). Despite the shorter run times with (2), the final relative volume per unit width (V 1)97

differs by an average of 0.5 % and a maximum of 1.9 % compared to simulations using (1) (Figure S6). We98

therefore initialize spin-up simulations for the perturbed beds using (2).99

2.5 Emulation of surging flow100

To produce synthetic datasets that represent slip-dominated glacier-flow regimes, and therefore mimic101

glacier surges, we perturb the coefficient β in the sliding law. For each glacier bed we use the corresponding102
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steady-state surface profile (blue lines in Figure 4.1) described above as the initial condition. We prescribe a103

uniform slip coefficient β = 3.5ˆ 10´4 MPa am´1 over the entire model domain except the glacier headwall104

(x ď 2 km). This value of β was determined by trial and error to produce an amount of terminus advance105

similar to that associated with the 2018–2019 surge of the real glacier. The slip-dominated simulations are106

run for 10 a, with a time-step of 0.1 a to ensure numerical stability. The resulting surface profiles at the107

end of the 10 a simulations are shown as orange lines in Figure 4.1.108

Back-calculated values of the contribution of basal slip to surface motion in these simulations demon-109

strate the slip-dominated nature of these flow regimes (Figures S7a,b), with all values above 0.8. The least110

slip-dominated regime is that of the composite bed (fuscia in Figure S7) owing to its comparatively high111

roughness (see Figure 4.1). Back-calculated values of the coefficient s as defined by Brinkerhoff and others112

(2016) are also shown (Figures S7c,d). This quantity relates depth-averaged velocity Ūprq to surface veloc-113

ity Usprq “ s Ūprq, such that s “ 1 corresponds to pure sliding (plug flow) and s “ pn` 2q{pn` 1q “ 1.25114

corresponds to pure deformation under idealized conditions (Nye, 1965).115

3 DISTRIBUTIONS OF MODEL VARIABLES FOR SYNTHETIC DATA116

Figure S8 shows distributions of surface speed, elevation change rate, mass balance and surface/bed eleva-117

tion for all four inversions of synthetic data for the composite glacier bed.118

4 ADDITIONAL INVERSIONS WITH SYNTHETIC DATA119

4.1 Inversions of synthetic data for beds defined by individual values of k120

Figures S9–S12 show the results of inversions of synthetic data for beds defined by individual values of k121

along with the composite bed (see Figure 4.1), while Figure shows the prior and posterior distributions of122

s for each of these simulations. Figure S14 summarizes performance metrics between the true and inferred123

beds for all four inversions. Values of r and RMSE in Figure S14 represent the mean values of distributions124

generated by computing r and RMSE between the true bed and all realizations of the bed in the posterior125

distributions. These metrics therefore comprise a comparison with the full posterior distributions of the126

bed.127

The mean correlation coefficient r (Figure S14a) generally increases with k for all four inversions,128

illustrating the greater ease with which longer-wavelength bed topography can be recovered. For nearly all129
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Fig. S8. Distributions of model variables for inversions with synthetic data: surface speed (row 1) with coloured

vertical lines representing one standard deviation of observational uncertainty, surface-elevation change rate (row

2) with standard deviation of priors shown as dashed lines (mean omitted to reduce clutter), surface mass balance

(row 3) with dashed lines as above, surface and bed elevation (row 4) shown along with true bed (black lines) and

known bed elevations input to the model (black dots). In all panels, the posterior means and one and two standard

deviations are shown in colour by solid line, dark shading and light shading, respectively. Posterior distributions are

narrow where shading is not visible. (a)–(d) Quiescent regime (column 1). (e)–(h) Surge regime (column 2). (i)–(l)

Full-epoch inversion (column 3). (m)–(p) Multi-epoch inversion (column 4).
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Fig. S9. Posterior distributions of the bed using data from deformation-only (quiescent) regimes for each synthetic

profile (see Figure 4.1 and main text). In all panels, the posterior means and one and two standard deviations are

shown in colour by solid lines, dark shading and light shading, respectively. True beds shown in black.
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Fig. S10. Posterior distributions of the bed using data from high-slip (surge) regimes for each synthetic profile

(see Figure 4.1 and main text). In all panels, the posterior means and one and two standard deviations are shown in

colour by solid lines, dark shading and light shading, respectively. True beds shown in black.
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Fig. S11. Posterior distributions of the bed using full-epoch inversions for each synthetic profile (see Figure 4.1

and main text). In all panels, the posterior means and one and two standard deviations are shown in colour by solid

lines, dark shading and light shading, respectively. True beds shown in black.
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Fig. S12. Posterior distributions of the bed using multi-epoch inversions for each synthetic profile (see Figure 4.1

and main text). In all panels, the posterior means and one and two standard deviations are shown in colour by solid

lines, dark shading and light shading, respectively. True beds shown in black.
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to depth-averaged glacier flow speed (s) for each synthetic profile (see Figure 4.1 and main text). s “ 1.0 represents

plug flow (pure sliding).
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distributions.
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Fig. S15. Comparison of full-epoch and multi-epoch inversions of synthetic data for composite bed with two

different prescribed quiescent intervals: 10 a (top row) and 40 a (bottom row). (a) Full-epoch inversion with 10 a

quiescent period. (b) Full-epoch inversion with 40 a quiescent period. (c) Multi-epoch inversion with 10 a quiescent

period. (d) Multi-epoch inversion with 40 a quiescent period.

values of k, and for the composite bed, mean values of r are highest for the high-slip (surge) regime, lowest130

for the deformation-only (quiescent) regime and intermediate for the multi-epoch and full-epoch inversions.131

Mean values of RMSE (Figure S14b) are roughly consistent across individual values of k. In most cases,132

inversions with data from the high-slip (surge) regime produce the lowest RMSEs, while those from the133

deformation-only (quiescent) regime produce the highest. The full-epoch and multi-epoch inversions lie in134

between, with the multi-epoch inversion out-performing the full-epoch inversion in every case.135

4.2 Inversions of synthetic data with longer quiescent interval136

The reference model in the main text assumed an arbitrary quiescent interval of 10 a. Inversion results137

for an assumed quiescent interval of 40 a are compared with those for 10 a in Figure S15. Inversions using138

quiescent-only and surge-only data (see main text) are unaffected by the prescribed quiescent interval, hence139

are not shown again here. Extending the quiescent interval from 10 a to 40 a results in loss of information140

in the full-epoch inversion, resulting in a smoother bed for the 40 a case (purple, Figures S15a,b). In141

contrast, the multi-epoch approach exhibits no loss of information in the 40 a case, with comparable bed142

posteriors (green, Figures S15c,d). This example demonstrates the increasing differential advantage of the143

multi-epoch over full-epoch approach as the quiescent interval increases.144
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Fig. S16. Synthetic input data (solid coloured lines) for composite-bed inversions with added noise: deformation-

only (quiescent) regime in blue, high-slip (surge) regime in orange and full epoch in purple (time-weighted average

of blue and orange curves). Multi-epoch inversion uses data in blue and orange. Shading indicates one standard

deviation intended to represent observational uncertainty. The noise-free data are shown with fine black lines for

reference. (a) Surface speed. (b) Surface-elevation change rate.

4.3 Inversions of synthetic data with added noise145

Figure S16 shows noisy synthetic surface speeds and elevation change rates derived from the original146

synthetic data with added random noise. The noise is assumed to be Gaussian with a standard deviation147

equal to 25% of the flowline-averaged magnitude of the individual surface speed or elevation change rate148

profiles. The mass-balance data remain unchanged. The corresponding inversion results (Figure S17) bear149

a qualitative similarity to the noise-free inversion results in the main text, including preservation of the150

relative performance of the four different inversions (surge, multi-epoch, full-epoch, quiescence).151

5 DISTRIBUTIONS OF MODEL VARIABLES FOR REAL DATA152

Figure S18 shows distributions of surface speed, elevation change rate, mass balance and surface/bed153

elevation for all four inversions of real data.154
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Fig. S17. Posterior distributions of the bed using noisy synthetic data (Figure S16). (a) Deformation-only (quies-
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Fig. S18. Distributions of model variables for inversions with real data: surface speed (row 1) with coloured

vertical lines representing one standard deviation of observational uncertainty, surface-elevation change rate (row 2)

with standard deviation of priors shown as dashed lines (mean omitted to reduce clutter), surface mass balance (row

3) with dashed lines as above, surface and bed elevation (row 4) shown along with values from Farinotti and others

(2019) (fine grey lines) and known bed elevations input to the model (black dots). In all panels, the posterior means

and one and two standard deviations are shown in colour by solid line, dark shading and light shading, respectively.

Posterior distributions are narrow where shading is not visible. (a)–(d) Quiescent regime, 2007–2016 (column 1).

(e)–(h) surge regime, 2016–2018 (column 2). (i)–(l) Full-epoch inversion, 2007–2018 (column 3). (m)–(p) Multi-epoch

inversion, 2007–2016 and 2016–2018 (column 4).
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