Supplementary material for:

A long-term mass-balance reconstruction (1974-2021) and a decadal in-situ mass-balance record (2011-2021) of Rikha Samba Glacier, central Himalaya

Tika Ram Gurung^{1, 2}, Rijan Bhakta Kayastha², Koji Fujita³, Sharad Prasad Joshi¹, Anna Sinisalo^{1, 4}, James D. Kirkham^{1, 5, 6}

¹International Centre for Integrated Mountain Development, Kathmandu, GPO Box 3226, Kathmandu, Nepal.

²Himalayan Cryosphere, Climate and Disaster Research Center, Department of Environmental Science and Engineering, School of Science, Kathmandu University, Dhulikhel, Nepal.

³Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.

⁴GRID-Arendal, Norway.

⁵Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, CB2 1ER, UK. ⁶British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.

Corresponding author: Tika Ram Gurung (tika.gurung@icimod.org)

Figure S1. Scatter plots comparing the Automatic Weather Station (AWS) and ERA5L data for air temperature, wind speed, solar radiation, relative humidity, and precipitation. Each graphic also includes the regression equation and correlation coefficients listed in Table 2. The 1:1 and best-fit lines are shown as solid and dashed lines, respectively.

Table S1: Parameters used to adjust the daily meteorological variables at the Rikha Samba Glacier AWS location. Linear regression (y = mx + c) was used to adjust the variables from the ERA5/ ERA5L data (x). Also listed are the correlation coefficients (r). The regression equation for precipitation was obtained by the assuming a zero intercept (c=0) to avoid persistent precipitation. Regression equations and correlation coefficients are calculated on a daily (single equation), monthly, 4 season and 2 season scale between the ERA5/ERAL and AWS data.

ERA5											
		Te	Femperature Precipitation		Radiation		RH		Wind		
Time		r	mx+c	r	mx+c	r	mx+c	r	mx+c	r	mx+c
Daily		0.9	0.7x-3.16	0.75	0.32x	0.7	0.93x+44.44	0.77	1.11x-0.3	0.45	5.81x+1.11
	January	0.23	0.21x-8.39	0.92	0.441x	0.66	1.11x-42.55	0.36	0.36x+0.03	0.05	0.6x+4.79
	February	-0.15	-0.22x-18.43	0.9	0.336x	0.83	1.98x-246.72	0.58	0.61x+0.03	0.11	1.58x+4.28
	March	0.69	0.61x-5.86	0.72	0.381x	0.61	1.63x-183.48	0.56	0.63x+0.03	0.07	0.9x+4.32
	April	0.1	0.2x-7.16	0.65	0.353x	0.43	1.14x-47.52	0.16	0.24x+0.23	0.54	9.36x-0.67
	May	0.31	0.37x-4.38	0.4	0.284x	0.57	1.38x-97.1	0.29	0.78x-0.11	0.37	6.39x+1.43
	June	0.55	0.68x-3.09	0.78	0.38x	0.67	0.69x+135.71	0.3	1.6x-0.78	0.66	9.45x-1.12
	July	0.35	0.56x-1.63	0.34	0.224x	0.67	0.92x+77.5	0.2	1.28x-0.34	0.15	1.2x+2.58
	August	0.6	0.66x-2.18	0.23	0.139x	0.37	0.66x+130.03	0.42	1.46x-0.47	0.29	2.75x+2.01
	September	0.73	0.8x-3.5	0.14	0.068x	0.64	1.09x+23.49	0.24	1.16x-0.3	0.26	3.25x+2.03
	October	0.84	0.79x-2.72	0.97	0.378x	0.71	0.9x+50.91	0.52	1x-0.19	0.25	3.97x+1.45
	November	0.7	0.61x-4.12	0.76	0.321x	0.23	0.4x+135.83	0.48	0.53x-0.06	0.19	3.48x+2.92
Monthly	December	0.69	0.65x-2.68	0.84	0.487x	0.65	0.99x+0.13	0.54	0.43x-0.04	0.11	1.44x+4.81
	Spring	0.73	0.7x-4.39	0.51	0.315x	0.65	1.44x-127.36	0.45	0.51x+0.08	0.24	2.33x+2.86
	Monsoon	0.69	0.76x-3.22	0.62	0.276x	0.64	0.79x+105.91	0.28	1.62x-0.69	0.5	3.73x+0.6
	Autumn	0.9	0.74x-3.15	0.85	0.305x	0.67	1.05x+17.65	0.71	1.17x-0.35	0.34	3.73x+0.93
4 Season	Winter	0.58	0.56x-4.2	0.9	0.399x	0.64	1.03x-17.37	0.5	0.5x-0.03	0.07	0.53x+4.89
	Summer	0.87	0.79x-3.51	0.59	0.259x	0.68	0.75x+108.09	0.56	1.87x-0.94	0.63	8.87-0.72
2 Season	Winter	0.78	0.65x-3.56	0.92	0.391x	0.73	1.07x-9.62	0.62	0.8x-0.15	0.22	3x+3.07

ERA5L											
		Temperature		Precipitation		Radiation		RH		Wind	
Time		r	mx+c	r	mx+c	r	mx+c	r	mx+c	r	mx+c
Daily		0.9	0.67x+1.52	0.47	0.24x	0.72	0.94x+35.98	0.81	1.03x-0.23	0.45	3.4x+2.94
	January	0.24	0.2x-7.1	0.49	0.239x	0.66	1.14x-52.53	0.35	0.35x+0.05	0.09	0.71x+4.72
	February	-0.15	-0.21x-19.96	0.69	0.27x	0.83	2.03x-264.49	0.59	0.63x+0.03	0.16	1.6x+4.29
	March	0.69	0.61x-1.02	0.33	0.178x	0.64	1.75x-230.48	0.59	0.64x+0.05	0.13	0.88x+4.39
	April	0	0x-8.31	0.33	0.225x	0.46	1.31x-112.84	0.14	0.19x+0.28	0.48	5.13x+2.63
	May	0.23	0.25x-2.7	0.07	0.184x	0.61	1.67x-206.18	0.35	0.75x-0.05	0.5	6.85x+2.5
	June	0.52	0.59x+1.12	0.57	0.339x	0.68	0.72x+121.94	0.48	1.81x-0.96	0.11	1.16x+3.47
	July	0.23	0.42x+2.16	0.38	0.271x	0.66	0.91x+73.74	0.4	2.6x-1.64	0.1	0.41x+3.01
	August	0.66	0.82x+2.07	0.07	0.138x	0.36	0.66x+125.24	0.61	2.3x-1.31	0.24	1.32x+2.88
	September	0.8	0.88x+2.2	0.02	0.059x	0.65	1.16x-0.69	0.47	1.93x-1.01	0.05	0.42x+3.6
	October	0.84	0.73x+2.63	0.26	0.123x	0.73	0.97x+29.77	0.53	0.9x-0.08	0.29	2.44x+2.84
	November	0.71	0.54x-0.48	0.52	0.223x	0.26	0.47x+119.87	0.55	0.6x-0.06	0.32	2.54x+3.75
Monthly	December	0.68	0.61x+1.3	0.71	0.407x	0.67	1.05x-13.59	0.6	0.48x-0.03	0.18	1.57x+4.82
	Spring	0.71	0.63x-0.01	0.2	0.2x	0.67	1.52x-165.74	0.48	0.52x+0.09	0.18	1.38x+4.39
	Monsoon	0.67	0.73x+1.76	0.48	0.278x	0.65	0.79x+99.04	0.58	2.49x-1.53	0.11	0.83x+3.14
	Autumn	0.9	0.69x+1.84	0.25	0.114x	0.7	1.12x-2.82	0.76	1.05x-0.23	0.46	3.64x+2.76
4 Season	Winter	0.59	0.54x-0.59	0.58	0.263x	0.65	1.07x-26.74	0.53	0.53x-0.02	0.1	0.85x+4.89
	Summer	0.86	0.72x+1.67	0.45	0.257x	0.68	0.76x+101.12	0.7	1.58x-0.7	0.36	3.51x+2.7
2 Season	Winter	0.79	0.63x+0.98	0.49	0.22x	0.75	1.09x-18.55	0.65	0.82x-0.12	0.34	2.61x+3.53

Figure S2. Root mean square error (RMSE) of the model performance for Rikha Samba Glacier. RMSE was calculated between the observed mass balance profiles of 1998/99, 2012/13, 2015/16, 2016/17, 2017/18 and 2018/19, and the modeled mass balance profile as a function of precipitation ratio (horizontal axis) against the estimated precipitation at AWS location and elevation gradient of precipitation (vertical axis) for the same period. The modeled mass balance was computed by forcing the bias-corrected daily input variable offered by the different S2 regression equations of the ERA5 and ERA5L data for a different time. The bias-corrected data with ERA5L on a daily scale have the lowest RMSE, so this combination was used to calculate the mass balance of Rikha Samba Glacier.

Table S2: Energy balance components of the whole glacier (summing up energy balance of all 23-elevation intervals) prior to 2000 and after 2000.

Flux (W m ⁻²)	Prior to 2000	After 2000
SW net	2204	2248
LW net	-1694	-1692
HL	-543	-563
HS	140	109
Q	107	102

	Change in terms of	Change in m	ass balance	
Perturbation	mean daily value	m w.e.	%	Sensitivity
T_a	-1.5K	0.731	132.68	-0.488 m w.e. K ⁻¹
T_a	-1K	0.542	98.37	-0.542 m w.e. K ⁻¹
T_a	-0.5K	0.296	53.77	-0.593 m w.e. K ⁻¹
T_a	+0.5K	-0.334	-60.63	-0.668 m w.e. K ⁻¹
T_a	+1K	-0.698	-126.56	-0.698 m w.e. K ⁻¹
T_a	+1.5K	-1.070	-194.18	-0.714 m w.e. K ⁻¹
P	-30%	-0.732	-132.79	0.024 m w.e.% ⁻¹
Р	-20%	-0.441	-80.04	0.022 m w.e.% ⁻¹
Р	-10%	-0.191	-34.71	0.019 m w.e.% ⁻¹
Р	+10%	0.198	35.85	0.020 m w.e.% ⁻¹
Р	+20%	0.358	64.88	0.018 m w.e.% ⁻¹
Р	+30%	0.519	94.11	0.017 m w.e.% ⁻¹
S _{in}	+20%	-0.448	81.23	-0.022 m w.e.% ⁻¹
S _{in}	-20%	0.347	62.88	-0.017 m w.e.% ⁻¹
RH	+20%	-0.227	-41.14	-0.011 m w.e.% ⁻¹
RH	-20%	0.186	33.71	-0.009 m w.e.% ⁻¹

Table S3: Sensitivities of glacier mass balance to air temperature (T_a) , precipitation (P), solar radiation (S_{in}) , and relative humidity (RH). Variable sensitivity was calculated as the ratio of the change in mass balance relative to the change in each parameter as a percentage except for air temperature (T_a) .

Table S4: Sensitivities of glacier mass balance to critical temperature (CT_a) and albedo (α).

	Change from the	Change in m	ass balance	
	reference model			
Perturbation	run value	m w.e.	%	Sensitivity
CT _a	-2°C	-0.020	3.69	-0.020 m w.e. °C ⁻¹
CT_a	-1°C	-0.042	-7.68	-0.021 m w.e. °C ⁻¹
CT _a	+1°C	0.035	6.29	0.009 m w.e. °C ⁻¹
CT _a	+2°C	0.056	10.16	0.011 m w.e. °C ⁻¹
α (0.0)	-100%	0.346	62.82	0.003 m w.e. % ⁻¹
α (0.1)	-50%	0.169	30.67	0.003 m w.e. % ⁻¹
α (0.3)	+50%	-0.161	-29.29	-0.003 m w.e. % ⁻¹
α (0.4)	+100%	-0.315	-57.13	-0.003 m w.e. % ⁻¹