- Yang K, Smith LC, Sole A, Livingstone SJ, Cheng X, Chen Z and Li M (2019) Supraglacial rivers on the Northwest
 Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery. *International Journal* of Applied Earth Observation and Geoinformation, 78, 1–13, ISSN 1872826X (doi: 10.1016/j.jag.2019.01.008)
 Yang K, Smith LC, Cooper MG, Pitcher LH, As DV, Lu Y, Lu X and Li M (2021) Seasonal evolution of
 supraglacial lakes and rivers on the Southwest Greenland Ice Sheet. *Journal of Glaciology*, ISSN 00221430 (doi:
- 684 10.1017/jog.2021.10)

APPENDIX A

685

The elements of image interpretation used to guide the development of this framework, as described by Shellito (2018).

	Element	Description
	Size	Relative size of different objects in an image or known dimensions of one object can provide
		clues to interpreting those objects.
	Tone	The intensity of color in an object. Tone can provide contrast with surrounding objects to aid
		in interpretation.
688	Texture	Differences or similarities in tone throughout an image, such as coarse or smooth.
	Location	Known site characteristics of a particular location can aid in interpreting an object.
	Shape	The form of objects in an image, such as circular, linear, or sinuous.
	Pattern	Physical arrangment of objects in an image. The relationship between objects (such as ordered,
		or being disarrayed) aids in image interpretation.
	Shadow	Shading cast by light shining onto an object. Shadows can provide information about the height
		or depth of an object, as well as the overall structure.
	Association	Image objects can be associated with other nearby objects giving an object context for
		interpretation.

689 APPENDIX B

- ${\tt 690}\quad {\tt Stream \ model \ polylines \ are \ classified \ as \ high, \ moderate, \ or \ low \ confidence, \ or \ as \ error \ streams, \ based \ on \ the}$
- criteria defined below. These criteria are visualized in the main text, but written out here as an alternative.
- High-confidence streams are defined as follows (Fig. 11):

The feature is curvilinear, exhibits a smooth texture and is white or blue in tone relative to its' surrounding (aerial imagery).

695 Or

696

697

698

699

700

701

703

The feature exhibits a brightness consistent with the features' shape (elevation depression) relative to its surrounding (Hillshade model); and the feature exhibits a light grey or white tone, indicating the presence of water (NDWI_{ice}).

Moderate-confidence streams are defined by the following characteristics:

The feature exhibits a brightness consistent with the features' shape (elevation depression) relative to its surrounding (hillshade model).

702 Or

The feature exhibits a light grey or white tone, indicating the presence of water (NDWI_{ice}).

Low-confidence streams are not curvilinear and smooth in texture, and lack evidence in the supporting layers that would be needed to classify a stream as high- and moderate-confidence. As seen in Fig. 12, the low confidence stream is disjointed (not curvilinear), a result of the flow accumulation calculation forcing flow in areas without streams. Error streams are defined by the same characteristics as low confidence streams, but exist downslope of a moulin.

Additional features were identified which interacted with the stream model polylines, moulins, crevasses, and ice cauldrons. Moulins were identified by the following characteristics:

The feature is situated at the terminus of a high-confidence stream; the feature is circular or nearly circular in shape and exhibits a difference in tone relative it its surrounding (aerial imagery); and the feature is located in an elevation sink (sink Model).

714 Or

711

712

713

715

716

717

The feature is situated at the terminus of a high-confidence stream; the feature is circular or nearly circular in shape and exhibits a difference in tone relative it its surrounding (aerial imagery); and the feature exhibits a light grey or white tone, indicating the presence of water (NDWI_{ice}).

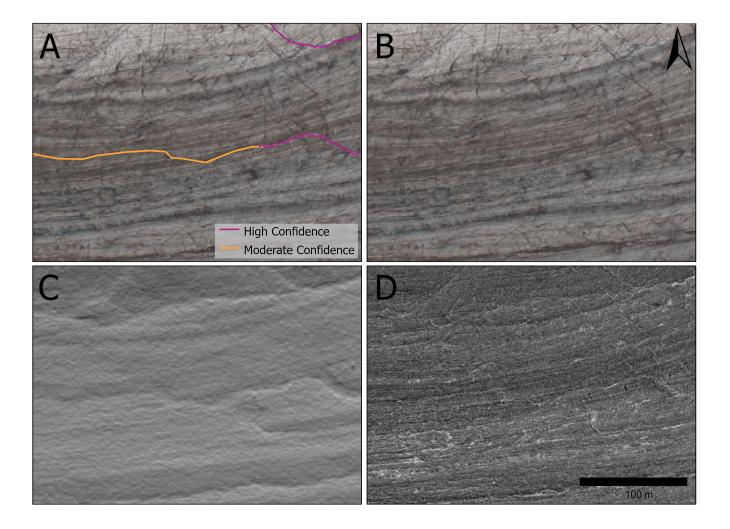


Fig. 11. An example from Nàłùdäy of (A) delineated moderate- and high-confidence streams shown over the high resolution orthmosaic (0.5 m). (B) High resolution orthomosaic without stream delineated, illustrating that, unlike high-confidence streams, moderate-confidence streams do not exhibit white or blue tone. (C) Hillshade model, showing the brightness consistent with a depression at the stream location; (D) NDWI_{ice} model, showing a light tone relative to the surroundings at the stream location.

Water-filled crevasses are defined by the following characteristics:

718

719

720

721

722

723

The feature follows or intersects a high- or moderate-confidence stream (stream model); the feature is linear, oriented approximately perpendicular to the direction of ice flow and is in the same orientation as neighbouring crevasses (aerial imagery); and the feature exhibits a light grey or white tone, indicating the presence of water (NDWI_{ice}).

Water-free crevasses are defined by the following characteristics:

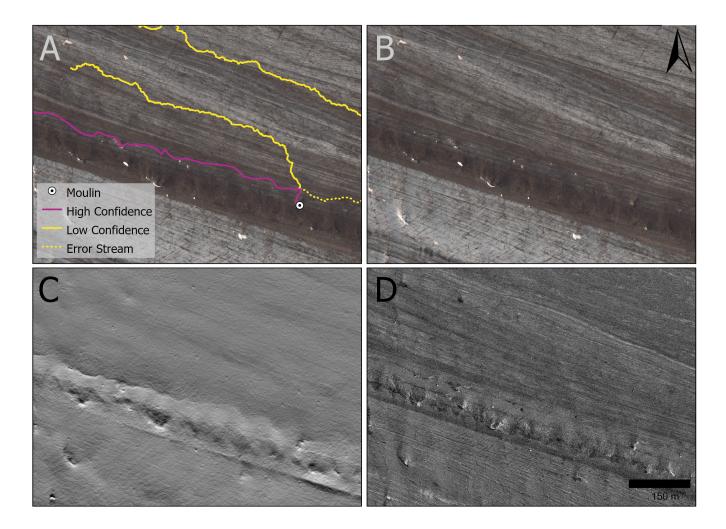
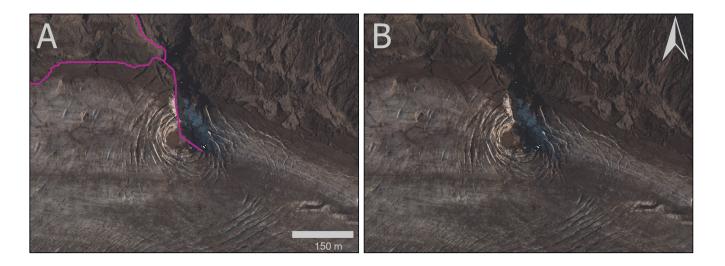


Fig. 12. An example from Nàlùdäy of (A) delineated low- and high-confidence streams shown over the high resolution orthmosaic (0.5 m). (B) High resolution orthomosaic without stream delineated, illustrating that, unlike high-confidence streams, low-confidence streams are not curvilinear smooth in shape, do not exhibit white or blue tone; (C) Hillshade model, showing no brightness consistent with a depression at the low-confidence stream location; (D) NDWI_{ice} model, showing no light tone relative to the surroundings at the low-confidence stream location.

The feature intersects a polyline (stream model); the feature is linear, oriented approximately perpendicular to the direction of ice flow and is in the same orientation as neighbouring crevasses (aerial imagery); and the feature exhibits multiple sinks consistent with the features' shape (sink model).


And example of an ice cauldron is show in Fig. 13:

724

725

726

727

Fig. 13. (A) Ice cauldrons are located at the terminus of high-confidence streams, (B) show brightness in the hillshade model consistent with a depression, and (A,B) contain a pattern of curved concentric lines (crevasses) surrounding their perimeter.