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1Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Switzerland
2Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

Correspondence: Annegret Pohle <apohle@ethz.ch>

Here we include results and detailed derivations that

are not directly relevant for the presentation in the main

document.

AERIAL IMAGE OF FIELD SITE

Figure S1 provides an ortho-rectified aerial image of the field

site.

ABSOLUTE PRESSURE AND
TEMPERATURE MEASUREMENTS

Fig. S2 shows water pressure (pw) and water temperature

(Tw) measurements at the sensors, for the times of selected

tracer experiments (equivalent to Fig. 3 in the main

document). Table S1 states the depths of the CTD sensors

for each day of measurements.

ESTIMATION OF THE KINETIC
POTENTIAL GRADIENT

The kinetic potential gradient is usually neglected in

glaciological applications (e.g. Röthlisberger, 1972; Nye, 1976;

Clarke, 2003). Here we estimate an upper bound of its size.

The kinetic potential is defined by

φv =
ρwv

2

2
, (S1)

where v is the water flow velocity. We denote the change in

velocity over the test section by ∆v. The kinetic potential

gradient can then be expressed in terms of ∆v and the mean

flow speed v̄ as

∂φv
∂z
≈ ρw

l
∆v v̄. (S2)

Now, assuming that the discharge is fixed over the test

section, the change in v stems from the change in the channel

cross-sectional area S. As bounds on the deviation of S from

its mean value S̄ (which is what we have from measurements),

we use a factor of two; i.e. we assume that at most S = 2S̄

and at least S = S̄/2. For AM13, this gives a maximum

∆v ≈ 1 ms−1 (using values of Q ≈ 0.02 m3s−1 and S̄ =

0.03 m2), and slightly less for AM15. Using above formula

(Eq. (S2)), ∆v = 1 ms−1 and typical values for AM13 (v̄ ≈
0.8 ms−1, l ≈ 100 m), we can estimate the maximal kinetic

potential gradient to be about 10 Pa m−1, which is a factor

40 smaller than the measured pressure gradient plus the

elevation potential gradient (Fig. 3a), and six times smaller

than the 15% error on that quantity. Similarly for AM15,

using v̄ ≈ 2 ms−1, l ≈ 50 m, gives a maximal estimated

kinetic potential gradient of about 40 Pa m−1, which is a

factor 20 smaller than the measured pressure gradient plus

the elevation potential gradient and three times smaller

than the standard error on that quantity. Therefore it is

appropriate to neglect the kinetic potential in our derivations.

ESTIMATION OF CLOSURE RATE

In general, the evolution of the cross-sectional area S of an

R-channel is described as

∂S

∂t
= vo − vc, (S3)

which is the balance between the opening rate vo and the

closure rate vc. In our study we only consider vo and set

vc ≈ 0. Here we show that vc is in fact negligible.

The closure rate vc is the result of viscous deformation of

ice and commonly formulated in terms of Glen’s flow law

vc =
2

nn
AS|N |n−1N, (S4)

where A = 2.4 × 10−24 s−1 Pa−3 (at 0 ◦ C, e.g. Cuffey

and Paterson (2010)) and n = 3 are empirical coefficients

associated to Glen’s flow law and N is the effective pressure

N = pi − pw = ρigz + patm − pw, (S5)

with pi being the hydrostatic ice pressure of an ice column

of thickness z, pw the water pressure, ρi the ice density,

g the gravitational acceleration and patm the atmospheric

pressure that we measured with the stage sensor (uncertainty

of 50 Pa). For z we use the mean depth of the two sensors

(Table S1) and for pw the mean between the values measured

by these two sensors (see Fig. S2).

In the time series of 9 and 21 of August 2020 (referred to as

9-Aug/AM15 and 21-Aug/AM13, respectively), for which we

run the ct-gradient model and the free-gradient model, the

closure rates are always negligible compared to the opening

rates (Figs. S3 and S4, Table S3). For 9-Aug/AM15, the

opening rates as determined by the ct-gradient model and

the free-gradient model are in the order of ∼ 10−6 m2 s−1.

The closure rates, determined through Eq. (S4), vary between

10−14 m2 s−1 and 10−9 m2 s−1. This means that the closure

rates are always at least three orders of magnitude smaller

than the opening rates. For 21-Aug/AM13, the opening rates

are in the order of ∼ 10−7 m2 s−1 while the closure rates

are around ∼ −10−11 m2 s−1, or four orders of magnitude

smaller in their absolute value. The negative closure rates on

this day mean that the water pressure was larger than the ice

overburden pressure.
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Fig. S1. Ortho-rectified aerial image of the field site including the locations of the main streams, boreholes and artificial moulins (as also

shown in Fig. 1). Note that this is a high-resolution image and will reveal many details when zoomed in (data from swisstopo).

FITTING THE FREE-GRADIENT
MODEL

In each iteration of the MCMC procedure, the free-gradient

model simulates the cross-sectional area Ŝ(m) based on

model parameters m = [∂Tw/∂z, Ŝ0], where Ŝ0 is the

initial condition for the cross-sectional area. The posterior

probability function P (m|d) then describes the agreement

with the data of the cross-sectional area d:

P (m|d) ∝ P (d|m)P (m), (S6)

where P (d|m) and P (m) = P (∂Tw/∂z)P (Ŝ0) are the priors

in data and model space, respectively; the former is commonly

called the likelihood. For P (d|m) and P (Ŝ0) we use Gaussian

distributions with the propagated uncertainties as the

standard deviations assuming independent measurements; for

P (∂Tw/∂z) we use a uniform distribution:

P (d|m) ∝ exp

[
−1

2

M∑
i=1

(
|Ŝi(m)− di|

σi

)2
]
, (S7)

P (Ŝ0) ∝ exp

[
−1

2

(
|Ŝ0 − d0|

σ0

)2
]
, (S8)

P (∂Tw/∂z) ∝

{
1, if ∂Tw/∂z ∈ [−10−2,−10−6] K m−1

0, otherwise.

(S9)

di is the ith of the M −1 measured cross-sectional areas with

uncertainty σi and the corresponding model output Ŝi(m).
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Fig. S2. (a) water pressure pw and (b) water temperature Tw, measured by the two CTDs in artificial moulin AM15 (left) and AM13

(right). The plotted time spans are the same as in Figure 3 in the main document. They represent the time spans when we conducted

tracer experiments and when the flow was pressurised. When comparing pw between different days, note that the depths of the sensors

and the length of the test-section (their vertical distance) were not always the same (see Table S1).

Table S1. Depth of the two CTDs on the days where the condition

of pressurised flow between the sensors was met. It is always

constant over the course of one day. Upper and lower CTD always

refer to the same instruments, they were never exchanged or

switched during the field campaign.

Day Test-section length (m) CTD depth (m)

Upper Lower

AM15

08 August 2020 102.2 62.4 164.6
09 August 2020 50.6 121.1 171.7

10 August 2020 50.8 120.9 171.7
11 August 2020 50.7 121.0 171.7

13 August 2020 40.3 131.6 171.9

AM13

21 August 2020 101.5 88.4 189.9

DERIVING EQUILIBRIUM
TEMPERATURE AND ITS
LENGTH-SCALE

Here we derive both the equilibrium temperature of water

flowing in an R-channel and the equilibrating length scale

associated with reaching it. The result will be similar to eq. 29

of Sommers and Rajaram (2020) but also includes effects

given by the pressure-melting point.

The steady-state energy equation is given by

v
dE

dz
= M, (S10)

where dE/dz = ρwcwSdTw/dz is the thermal energy gradient

(J m−1), z the distance along channel-flow path (m), v the

stream flow velocity (m s−1, assumed constant in space), and

M is a source term (W m−1). The source is composed of

potential energy dissipation and heat flux into the channel

wall (melting the ice there)

M = −Qdφ
dz
− PwH(Tw − Ti), (S11)

where Ti = ctpw is the ice temperature at the pressure

melting point (◦ C), Pw = 2
√
πS the wetted perimeter (m),

and H the heat transfer coefficient (W m−2 K−1). Inserting

this into Eq. (S10) and divding by PwH yields

z0
dTw
dz

= − Q

PwH

dφ

dz
− (Tw − ctpw), (S12)

with the equilibrating (e-folding) length scale defined as

z0 =
ρwcwQ

PwH
. (S13)

To solve this we define τw = Tw − ctpw, the offset of the

water temperature from the pressure melting point, and do a

variable substitution

z0
dτw
dz

= − Q

PwH

dφ

dz
− z0ct

dpw
dz
− τw. (S14)

Defining the equilibrium temperature (given as offset from

the melting point) as

τeq = − Q

PwH

(
dφ

dz
+ ρwcwct

dpw
dz

)
, (S15)

shows that τeq is the energy available for melt (see Eq. (12)

of the main document) scaled by PwH.

Equation (S14) now reads

z0
dτw
dz

= τeq − τw. (S16)

We can integrate this equation, assuming that Q, Pw, dφ
dz ,

dpw
dz , and thus τeq are constant, which should be approxi-

mately true for a uniformly inclined channel. Expressed in

terms of offset temperatures from the melting point, the

solution is

τw(z) = τeq + (τw0 − τeq) exp
(−z
z0

)
, (S17)

where τw0 is water temperature at z = 0. In terms of absolute

temperatures (◦C):

Tw(z) = ctpw

+ (Tw0 − ctpw) exp
(−z
z0

)
+ (Teq − ctpw)

(
1− exp

(−z
z0

))
, (S18)
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Fig. S3. Opening rates according to the ct-gradient model (black) and the free-gradient model (blue) in the time series for (a) 9-

Aug/AM15, and (b) 21-Aug/AM13. The fraction of the opening rates that is caused by frictional heating is indicated in grey and is the

same for both models. The difference between total opening rates and the frictional heat component corresponds to the energy provided

by sensible heat, which differs between the two models. Uncertainties at one standard deviation are represented by vertical lines.

Fig. S4. Absolute values of closure rates computed for the time

series of AM15 on 9 August (9-Aug/AM15, black) and for AM13

on 21 August (21-Aug/AM13, green). The closure rates themselves

are all positive for 9-Aug/AM15 and negative for 21-Aug/AM13.

with Teq = τeq + ctpw. Note that Eq. (S17) reduces to eq. 29

of Sommers and Rajaram (2020) for ct = 0.

The Nusselt number

Most terms of Eq. (S14) are derived from measurements or

estimated from the free-gradient model. The only missing

variables is the heat transfer coefficient H which can be

expressed in terms of the Nusselt number Nu:

Nu =
HD

k
. (S19)

Here, k = 0.57 Wm−1 ◦C−1 is the thermal conductivity

of water and D is a length scale for which we take the

standard value of the (hydraulic) diameter D = 2
√
S/π.

For Nu there are a number of empirical parameterisations

available; for each we calculate τw. We then compare each

τw to our temperature measurements and can check which

parameterisations are compatible with our data.

In the main document, we show daily means of the

thermodynamic properties (Fig. 5). Here, in Figure S5f, we

additionally show the predicted surface offset-temperature

τsurf and list all values in Table S2. In Figure S6 the

results corresponding to individual tracer experiments are

Fig. S5. As Figure 5 in the main document, but additionally with

panel (f) showing the expected offset-temperatures at the surface.

Vincent, Ogier and Gnielinski values are not or only partly shown

since they are above 100 ◦C for 21-Aug/AM13 (see Tab. S2)

resolved, which shows that the variation between different

Nu parameterisations is larger than the variations within one

day.
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Fig. S6. Parameters as in Figures 5 (main document) and S5 but showing values of individual tracer experiments rather than daily
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Table S2. Thermodynamic variables plotted in Figure 5 (see also Table 1). Normal font for 9-Aug/AM15, bold: 21-Aug/AM13

Parameter Standard Sommers Lunardini Vincent Ogier Gnielinski

Nu 1430.0 ± 120.0 1020.0 ± 99.0 2000.0 ± 190.0 8220.0 ± 620.0 5960.0 ± 360.0 8860.0 ± 740.0

481.0 ± 62.0 279.0 ± 43.0 565.0 ± 85.0 2990.0 ± 360.0 2700.0 ± 250.0 2980.0 ± 560.0

zeq (m) 155.0 ± 13.0 219.0 ± 17.0 111.0 ± 8.8 27.1 ± 2.5 37.4 ± 3.8 25.5 ± 4.0
89.9 ± 7.8 156.0 ± 12.0 76.7 ± 5.8 14.5 ± 1.4 16.0 ± 1.8 15.8 ± 11.0

τeq (◦C) 0.167 ± 0.01 0.236 ± 0.014 0.12 ± 0.007 0.029 ± 0.002 0.04 ± 0.003 0.027 ± 0.003

0.081 ± 0.007 0.141 ± 0.011 0.069 ± 0.005 0.013 ± 0.001 0.014 ± 0.002 0.014 ± 0.01
τw (◦C) 0.133 ± 0.017 0.187 ± 0.024 0.095 ± 0.012 0.023 ± 0.003 0.032 ± 0.004 0.022 ± 0.003

0.136 ± 0.025 0.235 ± 0.043 0.116 ± 0.021 0.022 ± 0.004 0.024 ± 0.004 0.024 ± 0.016
τw − τeq (◦C) -0.034 ± 0.018 -0.048 ± 0.026 -0.025 ± 0.013 -0.006 ± 0.003 -0.008 ± 0.004 -0.006 ± 0.003

0.055 ± 0.025 0.095 ± 0.044 0.047 ± 0.022 0.009 ± 0.004 0.01 ± 0.005 0.01 ± 0.008

τsurf (◦C) 0.079 ± 0.045 0.141 ± 0.047 0.028 ± 0.047 -1.52 ± 0.83 -0.422 ± 0.25 -2.68 ± 2.1
0.342 ± 0.12 0.373 ± 0.11 0.36 ± 0.13 231.0 ± 190.0 106.0 ± 91.0 617.0 ± 1400.0

Table S3. Daily means of total opening rate, opening rate due to sensible heat (without frictional dissipation), as well as closure rate.

The latter is neglected in both the free-gradient model and the ct-gradient model. Normal font: 9-Aug/AM15, bold: 21-Aug/AM13

Term ct-gradient model free-gradient model

Total opening rate (m2 s−1) 1.42×10−6 ± 9.2×10−8 1.13×10−6 ± 3.9×10−8

2.33×10−7 ± 1.9×10−8 3.89×10−7 ± 1.8×10−8

Opening rate due to sensible heat (m2 s−1) 9.35×10−7 ± 8.2×10−8 6.46×10−7 ± 3.9×10−8

2.08×10−7 ± 1.8×10−8 3.65×10−7 ± 1.8×10−8

Closure rate (m2 s−1) 4.21×10−11 ± 3.8×10−12

-1.98×10−11 ± 2.5×10−12


