
Supplementary Information

Melting temperature changes during slip across
subglacial cavities drive basal mass exchange

by Rempel,1 Meyer,2 and Riverman,3

1Department of Earth Sciences, University of Oregon, Eugene, OR, USA
2Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
3Department of Environmental Studies, University of Portland, Portland, OR, USA
Correspondence: Alan Rempel <rempel@uoregon.edu>

This Supplementary Information includes brief further discussion of i) equilibrium phase
behavior, ii) the vertical force balance, iii) variations in basal equilibrium temperature, iv)
perturbed conductive temperature profiles, and v) the potential for englacial phase changes
to modify thermal profiles.

Equilibrium Phase Behavior – Equations (1) and (2)

Equation (1) of the main text describes how the equilibrium temperature along an ice–
liquid interface is affected by liquid pressure P and the normal component of the ice stress
tensor at the interface σn. The somewhat involved arguments leading to this result for the
general case of a non-hydrostatic ice stress state can be found in the referenced citations
(e.g. Kamb, 1961; Paterson, 1973; Sekerka and Cahn, 2004) and will not be repeated here.
However, it is both instructive and relatively straightforward to consider the idealized case
of phase equilibrium conditions along an ice–liquid interface for which the homogeneous
ice pressure is Pi. At equilibrium, the chemical potential µ (i.e. Gibbs free energy per
molecule) of each phase must be the same. Considering small deviations of µi in the
ice and µl in the liquid water from a reference state at temperature T0 and pressure P0,
the Gibbs–Duhem equation allows the change in chemical potential in each phase to be
expressed using the leading-order terms in a Taylor series describing departures from those
reference temperature and pressure conditions so that
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Here, the left side is the change in chemical potential in the liquid phase obtained by
altering the temperature from T0 to Teq and the liquid pressure from P0 to P , while the
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right side is the change in chemical potential in the solid ice obtained by altering the
temperature from T0 to Teq and the ice pressure from P0 to Pi. The change in chemical
potential with temperature at constant pressure is the specific entropy s, and the change
in chemical potential with pressure at constant temperature is the specific volume, which
is the inverse of density ρ. Making these substitutions and rearranging leads to

(sl − si) (Teq − T0) ≈
1

ρi
(Pi − P0)−

1

ρl
(P − P0) ,

where the subscripts l and i refer to properties of liquid water and ice, respectively. The
difference in specific entropy between liquid water and ice can be expressed as the ratio of
the latent heat of fusion L to the reference temperature T0, yielding (after further algebraic
rearrangements)

Teq − T0 ≈
T0 (ρi − ρl)
ρlρiL

[
P − P0 +

ρl
ρl − ρi

(Pi − P )

]
. (S1)

Following substitution of equation (2) from the main text for the Clapeyron slope C0

and the ice normal stress σn for Pi, equation (S1) generalizes to equation (1) in the main
text when the ice stress state at the interface cannot be approximated as hydrostatic.
In non-hydrostatically stressed solids, the Gibbs free energy and its associated chemical
potential are not well defined (e.g. Kamb, 1961). The careful analysis that leads to the
result provided in equation (1) of the main text proceeds from the recognition that the
dominant influence of the ice stress tensor on phase equilibrium conditions arises from
the virtual work performed against σn as a result of the change in specific volume that
accompanies the change in phase (Paterson, 1973, p. 366). Although the other principal
components of the ice stress tensor do not have a significant influence on the equilibrium
melting temperature, their departure from σn can have important dynamic consequences.
Common glaciological examples of such non-hydrostatic stress states occur at the surface of
a collapsing borehole (e.g. Nye, 1953) or an R-channel containing liquid at a pressure that is
lower than the ice pressure (i.e. defined as one third the trace of the stress tensor) so that a
deviatoric radial stress drives creep closure at a rate that is compensated in steady state by
turbulent melting (Röthlisberger, 1972). Importantly, in such a system the force balance
constraint requires that changes in liquid pressure be balanced by changes in normal stress
and equation (1) correctly describes how this drives changes in the equilibrium melting
temperature that follow the Clapeyron slope. Where temperature measurements coincide
with liquid pressure measurements in boreholes that access the glacier bed, as recognized
by Nye (1953), typically the normal stress in the ice is equal to the liquid pressure and
transient pressure changes are expected to produce temperature changes that follow the
Clapeyron slope (e.g. Andrews and others, 2014; Huss and others, 2007).
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Vertical Force Balance – Equations (3) and (4)

Equation (3) of the main text contains a simple analysis of the vertical force balance over
a representative portion of the glacier base, with horizontally projected area A. Two
key assumptions deserve mention. First, the area is chosen to be of sufficient size that
the effects of vertical shear stresses on its boundaries (e.g. those that are associated with
vertical components of ice flow) are negligible in comparison with the ice weight that must
be supported over A, namely ∫

A
ρigH dA . (S2)

Second, the entire basal surface is separated by liquid from underlying bed materials (re-
ferred to in the main text as minerals, noting that they may be comprised of both bedrock
and unconsolidated sediments), and so it cannot support a shear stress. This implies that
the vertical component of the suitably integrated stress in the ice normal to the basal
surface can be equated with the glacier weight. With the basal ice surface at elevation
z = b(x, y) for some function b and horizontal Cartesian coordinates x and y, the unit
outward normal to the basal ice surface can be expressed as

n̂ =

(
∂b
∂x x̂,

∂b
∂y ŷ,−ẑ

)
√(

∂b
∂x

)2
+
(
∂b
∂y

)2
+ 1

,

where the Cartesian unit vectors are x̂, ŷ, and ẑ. This implies that the magnitude of the
vertical component (i.e. ẑ) of normal stress on a basal area element is

σn√(
∂b
∂x

)2
+
(
∂b
∂y

)2
+ 1

,

and recognizing that the ratio between the size of a basal area element and its projection
on the horizontal plane is

da

dA
=

√(
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)2

+

(
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)2

+ 1 ,

the magnitude of the vertical force arising from basal interactions can be written compactly
as ∫

a

σn√(
∂b
∂x

)2
+
(
∂b
∂y

)2
+ 1

da =

∫
A
σn dA . (S3)

The liquid pressure and the ice normal stress are equal at the ice–liquid interface over
macroscopic drainage elements. Away from such drainage elements, ice–mineral interac-
tions generate the thermomolecular pressure that supports the portion of the overburden
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that is not balanced by liquid pressure. A second distinct source of differences between
σn and P arises from the effects of surface energy on curved ice–liquid interfaces that is
known as the Gibbs–Thomson effect. The Gibbs–Thomson effect does not have a direct
role in supporting the glacier weight, but is nevertheless important for maintaining the
ice–liquid equilibrium temperature at a uniform level over mm-scale distances between
roughness elements, for example in the pore throats between particles when the glacier
bed is comprised of unconsolidated sediment. On an ice–liquid interface with unit normal
n̂ directed outwards from the ice, the interfacial curvature is ∇· n̂ and the combined effects
of the Gibbs–Thomson effect and the local thermomolecular pressure pT (ε) give rise to an
ice–liquid pressure difference of (e.g. Rempel, 2008, Eq. 2)

Pi − P ≈ σn − P = γil∇ · n̂ + pT (ε) ,

where γil ≈ 0.03 J m−2 is the ice–liquid surface energy and ε is the local thickness of the
premelted liquid films that separate the ice from the mineral substrate. Mathematically, the
integral of curvature over a surface can be expressed as a line integral along its boundary,
summing up components that are tangent to the surface along that boundary (e.g. Rempel
and others, 2001). Hence, when integrated over an area along the basal surface that
is chosen so that its tangent vector has only horizontal components on its boundaries
(e.g. following the trace of the surface along the midpoints of pore throats), the net vertical
force resulting from the thermomolecular pressure is exactly∫

a

pT√(
∂b
∂x

)2
+
(
∂b
∂y
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+ 1

da =

∫
a

σn − P√(
∂b
∂x

)2
+
(
∂b
∂y

)2
+ 1

da ;

the Gibbs–Thomson effect produces zero contribution to the integral on the right side. This
is a case where rigorous mathematical description may prove less satisfying than simple
physical reasoning. Demanding that surface–energy produce a net upwards force is akin
to asking that the ice somehow be supported by a surface traction that has no means of
exerting a net force against anything other than the adjacent ice on its boundaries (i.e. the
glaciological equivalent of “pulling itself up by its bootstraps”).

In the main text we define PT = σn−P as the homogenized thermomolecular pressure
that is the net force per unit macroscopic basal area arising from ice–mineral interactions;
while PT is suitably defined and may be regarded as uniform over macroscopic areas, over
length scales of millimeters or smaller, the local thermomolecular pressure pT (ε) that is
responsible for generating this net pressure is itself made heterogeneous by local variations
in ice–mineral separation ε and interfacial curvature ∇ · n̂. (Further discussion of other
glaciological consequences of such behavior is contained in Rempel, 2008; Meyer and others,
2018, 2019). Substituting the definition for PT allows the integral of σn to be expressed as∫

A
σn dA =

∫
A

(P + PT ) dA . (S4)

S4



The vertical force balance is obtained by equating equation (S2) and (S4) to yield equation
(3) in the main text.

To arrive at equation (4) in the main text, we define the average ice-equivalent thickness
as

H0 =
1

A

∫
A
H dA ,

so that with the average liquid pressure defined as

P̄ =
1

A

∫
A
P dA ,

and the average thermomolecular pressure over the portion of the bed area that does not
contain macroscopic drainage elements defined as

P̄T =
1

(1− φ)A

∫
(1−φ)A

PT dA ,

the leftmost and rightmost sides of equation (3) can be expressed as

ρigH0A = P̄A+ (1− φ) P̄TA . (S5)

For the idealized case considered, with a homogeneous liquid pressure P = P̄ and with
PT = P̄T , equation (S5) simplifies to equation (4) in the main text.

Variations in Equilibrium Temperature – Equations (5)–(7)

The expressions in equations (5)–(7) of the main text are obtained by simple substitution
into equation (1). It is worth emphasizing the differences in scale of changes in equilibrium
temperature with changes in the controlling liquid pressure and ice normal stress. In
particular, we have that at constant values of PT = σn − P (e.g. along the ice-walled
boundaries of macroscopic drainage elements, with PT = 0),

∂Teq
∂P

∣∣∣∣
constantPT

= −C0 .

This can be contrasted with the behavior that results from variations in P away from
drainage elements, where PT must also change to maintain the vertical force balance over
representative projected areas A that is described by equation (4) of the main text (or S5
above), so that

∂Teq
∂P

∣∣∣∣
PT=(P0−P )/(1−φ)

=
C0

1− φ
ρi + φ(ρl − ρi)

ρl − ρi
.

Because the density difference between the phases is about 10% of the densities of either
the liquid or the solid, the equilibrium temperature over macroscopic drainage elements,
where PT = 0, tends to be about an order of magnitude less sensitive to liquid pressure
changes than the equilibrium temperature over premelted regions.
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Perturbed Temperature Profiles and Surface Gradients – Equa-
tions (8) and (13)

Equation (8) in the main text gives the perturbation to the temperature gradient along
the sliding interface following a jump in equilibrium temperature of size ∆T ; this result
can be found in standard reference texts, including Carslaw and Jaeger (1959). To further
explore how the temperature profile responds to such a change in boundary temperature,
consider the case in which the temperature profile within the ice immediately prior to the
jump in temperature is steady at T̃ (z, 0) = T̃i(z). We define the perturbed temperature
as T (z, t) = T̃ (z, t) − T̃i(z) so that when the heat transport can be considered to follow
Fourier’s law with a constant thermal conductivity, the evolution of T satisfies

∂T

∂t
= κ

∂2T

∂z2
,

where κ is the thermal diffusivity. Introducing the similarity variable η = z/(2
√
κt), this

can be written as
d2T

dη2
= −2η

dT

dη
.

Integrating twice and applying the boundary conditions that T (0, t) = ∆T and T (∞, t) = 0
(with initial condition T (z > 0, 0) = 0) gives the perturbed temperature field as

T (z, t) = ∆T erfc

(
z

2
√
κt

)
,

and the perturbation to the temperature gradient as

∂T

∂z
= − ∆T√

πκt
exp

(
−z2

4κt

)
.

Equation (8) in the main text expresses the perturbed temperature gradient at z = 0.
The analysis is easily extended to consider the response of the temperature field to

any number of subsequent changes in the boundary temperature at z = 0. For example,
consider the case where, after applying a jump of ∆T at t = 0, the boundary temperature
subsequently changes discontinuously again by −∆T at t = t1. The perturbed temperature
field that we just determined satisfies the heat equation, so we can define T1(z, t ≥ t1) =
T̃ (z, t ≥ t1) − T (z, t ≥ t1), and look for a similarity solution in the same manner, finding
that

T1(z, t ≥ t1) = −∆T erfc

[
z

2
√
κ(t− t1)

]
.

Hence the temperature field itself for t ≥ t1 is

T̃ (z, t ≥ t1) = T̃i + ∆T erfc

(
z

2
√
κt

)
−∆T erfc

[
z

2
√
κ(t− t1)

]
,
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with gradient

∂T̃

∂z
= − ∆T√

πκt
exp

(
−z2

4κt

)
+

∆T√
πκt

exp

[
−z2

4κ (t− t1)

]
+
∂T̃i
∂z

.

For ice sliding at a fixed velocity us, the time taken to reach location x is x/us and the
time elapsed since reaching a cavity’s termination at x = ` is t− t1 = (x− `)/us; making
these two substitutions, the perturbation to the temperature gradient at z = 0 is given by
equation (13) in the main text.

As noted in the main text, in our treatment we assume that the initial steady state tem-
perature profile T̃i(z) reaches Tpremelt at the bed. This assumption is consistent with cases
in which the fraction of the bed that is covered by macroscopic drainage elements φ is small.
It is straightforward to consider alternative choices for T̃i(z). For example, as φ increases
it may be sensible to instead set the initial basal temperature to an appropriately weighted
combination of Tpremelt and Tdrainage, with a uniform T̃i(z) = φTdrainage + (1− φ)Tpremelt =
Tpremelt + φ∆T as one obvious choice. Such a modification would reduce the size of the
initial temperature step to (1−φ)∆T , with each subsequent upward and downward temper-
ature step remaining unchanged at size ∆T . A disadvantage of this proposed alternative
choice for T̃i(z) is that it does not match the boundary condition and reach Tpremelt at the
bed. More generally, of course the assumption of any steady initial profile is likely to be
violated in nature, with thermal conditions above the bed determined by the history of
changes in basal temperature, surface temperature and internal dissipation.

Extension For High Englacial Liquid Concentrations

The Gibbs–Thomson effect, along with minor quantities of soluble impurities, enables liquid
veins to persist along the triple junctions where three ice grains meet, connecting at nodes
to form a liquid network that is in equilbrium with temperate ice (e.g. Nye and Frank, 1973).
Estimates of the upper bound on liquid fraction at Blue Glacier by Raymond and Harrison
(1975, Table III) suggest that values as high as 0.09% might have been present in fine-
grained ice both near the surface and near the bed, and the question arises as to the effects
of such liquid contents on the heat transport that enables basal freeze-on. To ascertain the
likely importance of this complication, we first recognize that the liquid volume fraction
itself nl is expected to be a decreasing function of the temperature departure from bulk
equilibrium (i.e. with P = σn). Including the effect of changes in nl in the energy balance
(while neglecting advective transport) leads to

∂T

∂t

(
1− L

Cp

dnl
dT

)
= κ

∂2T

∂z2
,

where L is the latent heat and Cp is the specific heat capacity. Since englacial liquid
contents are expected to become appreciable only in temperate ice, we anticipate that
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dnl/dT should produce a significant contribution to the left side of the equation over a
fairly limited temperature range.

Although the precise form of the dependence of nl on T is likely to depend on a number
of highly variable factors, such as the ice crystal size distribution and typical aspect ratios,
we can make progress by considering limiting cases. For example, if the liquid content owes
its presence primarily to the colligative effects of minor quantities of impurities, we might
expect that nl should be well approximated over a limited range by a linear function of
temperature. In this case, the results of the analysis above and in the main text remain
functionally the same, but with a larger modified effective thermal diffusivity κ̂ replacing
its dry value as κ̂ = κ/[1 − (L/C)(dnl/dT )]. For example, this would be expected to
reduce the thickness of freeze-on that accompanies transport over a single cavity from the
expression given in equation (9) of the main text to

h0 ≈
2√
π
`
Cp∆T

L

√
κ

us`
(

1− L
Cp

dnl
dT

) .
For intuition, given a temperature change of ∆T , this modified formula produces a predic-
tion for h0 that is noticeably smaller than that from equation (9) of the main text if the
change ∆nl is comparable to or larger than Cp∆T/L, or about 0.06 % when ∆T = 0.1 ◦C.
The reports from Blue Glacier suggest that such complications may be important in some
portions of at least some temperate glaciers, but the prevalance of such conditions is not
well constrained.

We note that in circumstances where the impurity content in the ice is sufficiently small
that the liquid fraction is controlled primarily by the Gibbs–Thomson effect rather than
by the temperature depression associated with colligative effects, the change in nl with T
might be expected to be nonlinear (e.g. Rempel, 2005), causing the sensitivity of diffusive
heat transport to latent heat effects to decrease as the temperature cools. Moreover, at
large values of nl, the permeability of the ice to liquid transport may further affect the
temperature field. As there is currently only very sparse quantitative data available to
constrain the absolute levels of nl in temperate basal ice, let alone changes in nl with T ,
we leave further speculation over such potential effects to future work.
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