Supplementary Material:

Spatially distributed simulations of the effect of snow on mass balance and flooding of Antarctic sea ice

Nander WEVER, Katherine LEONARD, Ted MAKSYM, Seth WHITE, Martin PROKSCH, Jan T. M. LENAERTS

Figure S1: Map of ice station PS81/503 in a floe-based coordinate system, with northing and easting aligned with WGS 84 / UTM zone 28S (EPSG 32728) at the start of the magnaprobe survey, with colours denoting (a) snow + ice thickness from GEM-2, and (b) snow depth from Magnaprobe. The black dot denotes the GPS base station, triangles denote TLS reflectors, and black lines denote the Retro-Drilling transects. Lower panels show snow + ice thickness (c) and snow depth (d) along the floe-scale walk, with markers A to E showing corresponding points between the graphs and the maps in (a) and (b).

Figure S2: Map detail of Fig. S1 in this Supplementary Material, showing the TLS field of ice station PS81/503 in a floe-based coordinate system, with northing and easting aligned with WGS 84 / UTM zone 28S (EPSG 32728) at the start of the magnaprobe survey, with colours denoting (a) snow + ice thickness from GEM-2, and (b) snow depth from Magnaprobe. The black dot denotes the GPS base station and triangles denote TLS reflectors.

Figure S3: Map detail of Fig. 2 in main article, showing the TLS field of ice station PS81/506 in a floe-based coordinate system, with northing and easting aligned with WGS 84 / UTM zone 27S (EPSG 32727) at the start of the magnaprobe survey, with colours denoting (a) snow + ice thickness from GEM-2, and (b) snow depth from Magnaprobe. The black dot denotes the GPS base station, triangles denote TLS reflectors, and black lines denote the Retro-Drilling transects.

Figure S4: Map detail of Fig. 3 in main article, showing the TLS field of ice station PS81/517 in a floe-based coordinate system, with northing and easting aligned with WGS 84 / UTM zone 22S (EPSG 32722) at the start of the magnaprobe survey, with colours denoting (a) snow + ice thickness from GEM-2, and (b) snow depth from Magnaprobe. Black dots denote GPS surveyed points, triangles denote TLS reflectors, and black lines denote the Retro-Drilling transects. The blue lines in the TLS field denote the SMP transects.

Figure S5: Results of the calibration of the SMP, showing density from snow pit measurements and SMP over collocated 3 cm segments of the snowpack.

Figure S6: Snow thickness, freeboard and snow+ice thickness distributions for ice station PS81/503, based on floe-scale Magnaprobe, Magnaprobe inside the TLS field, and the Retro-Drilling survey. Distributions are shown as violin plots (Hintze and Nelson, 1998). The violin plot combines a box plot (shown in black, indicating the median by a white dot, the interquartile range by a black box, and either the minimum or maximum value, or 1.5 times the interquartile range, whichever is closer to the median, by the black lines) with a symmetrically plotted rotated kernel density which shows the full, smoothed, distribution.

Figure S7: Temperature as simulated by the one-dimensional simulations for the IMB buoy installed at ice station PS81/506 for (a) default setup with bulk salinity of 1.75 g kg⁻¹ for layers below sea level and (b) a perturbed setup with a bulk salinity of 5 g kg⁻¹ for those layers. Depth is relative to the initial snow-ice interface, which is indicated by a dashed black line. Sea level is denoted by a solid black line, and the sea ice top, flooding level and sea ice bottom determined from the IMB data are shown by a dotted, solid, and dashed cyan line, respectively.

Figure S8: Volumetric liquid water content (LWC) as simulated by the onedimensional simulations for the IMB buoy installed at ice station PS81/506 for (a) default setup with bulk salinity of 1.75 g kg⁻¹ for layers below sea level and (b) a perturbed setup with a bulk salinity of 5 g kg⁻¹ for those layers. Depth is relative to the initial snow-ice interface, which is indicated by a dashed black line. Sea level is denoted by a solid black line, and the sea ice top, flooding level and sea ice bottom determined from the IMB data are shown by a dotted, solid, and dashed cyan line, respectively. Dry snow is colored grey.

References

Hintze JL and Nelson RD (1998) Violin plots: A box plot-density trace synergism. *Am. Stat.*, **52**(2), 181–184 (doi: 10.1080/00031305.1998.10480559)