## Supplementary Material

1

| 2  | Kinematics of the exceptionally-short surge cycles of Sít'                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------|
| 3  | Kusá (Turner Glacier), Alaska, from 1983 to 2013                                                                                 |
| 4  | Andrew NOLAN, <sup>1*</sup> William KOCHTITZKY, <sup>1,2†</sup> Ellyn ENDERLIN, <sup>3</sup> Robert McNABB <sup>4,5</sup> , Karl |
| 5  | $\mathrm{KREUTZ}^{1,2}$                                                                                                          |
| 6  | <sup>1</sup> School of Earth and Climate Sciences, University of Maine, Orono, ME, USA                                           |
| 7  | <sup>2</sup> Climate Change Institute, University of Maine, Orono, ME, USA                                                       |
| 8  | <sup>3</sup> Department of Geosciences, Boise State University, Boise, ID, USA                                                   |
| 9  | $^4S$ chool of Geography and Environmental Sciences, Ulster University, Coleraine, United Kingdom                                |
| 10 | <sup>5</sup> Department of Geosciences, University of Oslo, Oslo, Norway                                                         |
| 11 | Correspondence: And rew Nolan < anolan@sfu.ca>                                                                                   |

<sup>\*</sup>Present Address: Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

<sup>&</sup>lt;sup>†</sup>Present Address: Department of Geography, Geomatics, and the Environment, University of Ottawa, Ottawa, Canada

| Method               | Dataset                                                                                                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Terminus Delineation | Landsat 2 MSS (4), Landsat 3 MSS (1), Landsat 4 MSS (7), Landsat 4 TM (1), Landsat 5 TM (163), Landsat 7 ETM+(178), and Landsat 8 OLI (78) |
| Velocity Mapping     | Landsat 5 TM (20), Landsat 7 ETM+(7), and Landsat 8 OLI (4)                                                                                |
| DEMs                 | ASTER $(4)$ , SPOT5 $(1)$ , IFSAR-Alaska $(1)$ , and WV-1 $(2)$                                                                            |

**Table S1.** Dataset overview for the three methods used in our analysis. The number within parentheses is the number of scenes from each sensor used for the respective method. For the Landsat missions: MSS is multi spectral scanner, TM is thematic mapper, ETM+ is enhanced thematic mapper +, and OLI is operational land imager. For the DEMs: ASTER is Advanced Spaceborne Thermal Emission and Reflection Radiometer, SPOT5 is Satellite Pour l'Observation de la Terre 5, IFSAR-Alaska is Interferometric Synthetic Aperture Radar Alaska, and WV-1 is Digital Globe's WorldView-1.



**Fig. S1.** Median speeds  $(m d^{-1})$  and percent coverage over sampling area of interest shown on the inset map of (a). Results for quiescent (a) and active (b) phase scene pairs are both shown. Grey vertical lines represent uncertainties and the dashed black line is the selected kernel size.



**Fig. S2.** 1983–1986 surge speed observations projected on a UTM 7N grid. The title of each subplot is the dates of image pair plotted, where dt is separation between scenes in days.

| Satellite/Sensor | Granule Name                                                            | Acquisition Date |
|------------------|-------------------------------------------------------------------------|------------------|
| ASTER            | AST_L1A_00304052001205827                                               | 20010405         |
|                  | AST_L1A_00305202003205451                                               | 20030520         |
|                  | AST_L1A_00303022006204725                                               | 20060302         |
|                  | AST_L1A_00307172012204209                                               | 20120717         |
| WorldView-1      | $\rm SETSM\_WV01\_20130526\_1020010023316100\_1020010024AFB800\_seg1$   | 20130526         |
|                  | ${\rm SETSM}\_WV01\_20131207\_1020010028A0CD00\_1020010027DDD800\_seg1$ | 20131207         |
| SPOT5            | $GES_08029$                                                             | 20070903         |

**Table S2.** Satellite/sensor, granule name, and acquisition date (YYYYMMDD) for satellite-based DEMs used inthe analysis.



**Fig. S3.** 1991–1993 surge speed observations projected on a UTM 7N grid. The title of each subplot is the dates of image pair plotted, where dt is separation between scenes in days.



**Fig. S4.** 1999–2002 surge speed observations projected on a UTM 7N grid. The title of each subplot is the dates of image pair plotted, where dt is separation between scenes in days.



**Fig. S5.** 2006–2008 surge speed observations projected on a UTM 7N grid. The title of each subplot is the dates of image pair plotted, where dt is separation between scenes in days.



**Fig. S6.** 2012–2013 surge speed observations projected on a UTM 7N grid. The title of each subplot is the dates of image pair plotted, where dt is separation between scenes in days.