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Power law, lognormal, and Weibull distributions have previously been used to describe Greenlandic and4

Antarctic iceberg size distributions (e.g. Savage and others, 2000; Tournadre and others, 2012; Enderlin and5

others, 2016; Kirkham and others, 2017; Sulak and others, 2017). The application of different statistical6

models to describe iceberg size distributions suggests that the physics of iceberg decay plays an important7

role in determining the size distribution of ice pieces (Savage, 2001), particularly when time and distance8

from the parent glacier and/or parent iceberg are considered. For example, a recent analysis by Kirkham and9

others (2017) suggests that at the time of calving icebergs follow a power law distribution which transitions to10

a lognormal distribution with distance from the calving location as different and increasingly fewer physical11

processes dominate the decay process.12

The shape of any distribution function describing iceberg sizes (e.g. area, length, volume/mass) can be13

broadly described as highly skewed or heavy-tailed. As such, the data becomes easier to interpret when14

viewed in log-log space (Fig. S1). The selection of bin sizes to describe frequency data in log-log space15

inevitably plays a role in our interpretation of the data. Specifically, a probability density function (PDF)16

with linearly spaced bins (Fig. S1a) clearly displays an inflection point in the data. The location of the17

inflection point, here at iceberg surface areas of ~10000 m m2, depends completely on the choice of bin size18

and has no physically-based interpretation. Thus, using a PDF with linearly spaced bins to describe iceberg19

size distributions makes it difficult to fit size distributions to the entire dataset unless a maximum x value20

is defined (Alstott and others, 2014), resulting in the unnecessary exclusion of a portion of the dataset. A21

PDF with logarithmically-spaced bins (Fig. S1b) effectively includes the larger icebergs in the distribution22

and smooths the inflection point, but the shape and slope of the curve are still influenced by the number of23

bins used. Alternatively, a complimentary cumulative density function (CCDF, Fig. S1c) provides a means24

of objectively fitting a size distribution without the need for determining ideal bin sizes (Alstott and others,25

2014). This approach is commonly taken in available computational libraries designed for testing power law26

and other similar heavy-tailed distributions and is the method used here.27

The large number of methods employed in the literature for fitting iceberg size distributions suggests28

the non-trivial nature of fitting empirical distributions to natural phenomenon. Unfortunately, it is all too29
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common that the preferred model used to fit size distributions is chosen based primarily on a qualitative30

inspection of the data rather than robust statistical methods (Clauset and others, 2009). In the case of31

supposed power law distributions, the fitted parameters are often computed using a least squares fit to32

the data in log-log space, alternative distributions are not rigorously evaluated, and the statistical validity33

of the model for describing the dataset is not tested (Clauset and others, 2009). However, the limitations34

imposed by statistical rigor have the potential to effectively eliminate large portions of a measured dataset,35

in turn making it difficult to characterize a natural system and suggesting that a compromise between pure36

and applied mathematics is necessary to describe the stochasticity of natural phenomena in a consistent37

framework.38

As a starting point to determine the best fit models to describe our data, we used the poweRlaw package39

(Gillespie, 2015) for the open-source statistical software R (R Core Team, 2018). The package contains40

easy-to-implement methods for testing power law, lognormal, and exponential fits of the form:41

powerlaw : f(x) = x−α

42

lognormal : f(x) = 1
x
exp[−(ln(x) − µ)2

2β2 ]
43

exponential : f(x) = e−λx

where α, µ, β, and λ are their respective fit parameters. It includes methods for determination of the best44

minimum x (xmin) value based on the Kolmogorov-Smirnov (KS) fit statistic, measures of model fit and45

estimates of parameter uncertainty using bootstrapping, and model intercomparisons using log likelihood-46

ratio testing (Vuong’s method) to compare alternative distributions (Clauset and others, 2009). The process47

of fitting and testing a statistical model using the package is outlined in detail in Clauset and others (2009)48

and in the package’s documentation. An iceberg size distribution from 31 August 2013 with potential model49

fits and relevant statistical parameters is shown in Figure S1 and Table S1. In this example case and for one50

other case tested (not shown), the exponential curve showed a visually poor fit to the data and exhibited51

very high xmin values with associated poor goodness of fit values for the xmin estimation. When compared to52

other models, the non-exponential models had a statistically significant better fit. As a result, the exponential53

model was not considered further as a potential distribution for the iceberg size distribution data.54

A key step that drives the rest of the analysis for fitting a model distribution to any dataset begins with55

the determination of xmin values for each model. xmin is determined using the KS statistic as detailed in56
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Fig. 1. Size distribution of icebergs delineated by the automated algorithm for the Landsat scenes collected 2013

08 31. a (b) shows the iceberg area probability density function (PDF) in log-log space with linear (log) bins. c)

shows the complimentary cumulative distribution function (CCDF) for the dataset with modeled power law (yellow

dashed) and lognormal fits (solid green). n = 16145, ntail = 492.

Clauset and others (2009) and identifies the starting point beyond which the data can most accurately be57

described by a given distribution; over- or underestimation of this statistic quickly influences the value of fit58

parameters, with a too-high value being preferred to a too-low value (Clauset and others, 2009). Although59

the minimum iceberg size theoretically detectible in Landsat imagery would be one pixel (225 m2), the xmin60

values recommended by the software for the example size distribution are an order of magnitude larger,61

though they are similar for both the power law and lognormal models. In order to compare two distributions,62

they must have equivalent xmin values. Thus, we compared the power law and lognormal models using both63

xmin values, and in both cases the p value was >0.1, suggesting we cannot reject the null hypothesis that one64

model is a better fit to the data with the sign of the returned ratio R indicating which model is better. For65

future interpretations wherein R is statistically significant, in our implementation of the package negative R66

values indicate the lognormal model is a better fit. A visual inspection of the power law and lognormal curves67

Table 1. Iceberg size distribution fit parameters from poweRlaw for one Landsat scene (2013 08 31).

Powerlaw Lognormal
Comparison Comparison

(power law xmin) (lognormal xmin)

xmin α xmin µ β R p R p

6750 2.58 6525 5.59 1.67 -1.48 0.14 -1.64 0.101
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fitted to the data provides qualitative confirmation that the distribution could readily be described by either68

model. Acknowledging that neither model necessarily provides a better fit to the data but in pursuit of a69

quantitative description of the shape of the iceberg size distribution curve, we ran a bootstrapping procedure70

with 1000 iterations using the power law model to determine the statistical significance of a power law fit and71

the uncertainty on the parameter estimate. The results of this bootstrapping suggest that a power law fit to72

the data is statistically significant (p=0.181>0.1). The fitted parameter (α), which is the slope of the power73

law fit, has a value of 2.58 ± 0.10. This value is notably larger than previously estimated values (Enderlin74

and others, 2016; Sulak and others, 2017) and the theoretically expected value of 1.5 (Aström and others,75

2014), possibly suggesting that previous investigations have underestimated the fit parameter and/or the76

theoretically derived value does not apply to Disko Bay given the distance of the icebergs from the calving77

front. The portion of the dataset fitted by the statistical model contains enough values (n ~500) to suggest78

the obtained parameter estimates are reliable, though the number of observations in the data tail is small79

enough (<1000) that the algorithm’s selection of xmin may be compromised in this case (Clauset and others,80

2009).81

The above analysis suffers from several important limitations. First, only three models are considered;82

these models were chosen based on their previous use in the literature, qualitative inspection of the data,83

and ease of comparison. However, alternative models not tested in the poweRlaw implementation might84

provide a superior fit to the data and/or be able to explain a larger portion of the dataset. Second, the85

xmin values calculated by the algorithm eliminate an overwhelmingly large proportion of the iceberg areas86

measured (often >50% of the data). This has the important consequences of reducing the likelihood of87

statistically significant outcomes that generally arise from a large dataset and failing to characterize the full88

range of data, thereby posing a challenge for assessing changes in characteristic iceberg size distributions.89

Third, where lognormal was the preferred model, the software does not enable computation of the statistical90

significance of the model fit. Thus, it is impossible to tell whether or not the lognormal fit is statistically91

valid, even if the parameter uncertainty is small. Together, these limitations suggest that perhaps the power92

law and lognormal models are too simplistic to represent the proportions of icebergs present across the full93

range of iceberg sizes. Alternative models such as the large number of rare events model may provide a94

suitable distribution, especially to capture the tail portions of the size distribution curve, which includes95

the comparatively rare but largest icebergs present in many regions. An alternative approach to fitting one96

model to the data would be to apply breakpoint regression or a related statistical technique that iteratively97
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tests different models on portions of the data to determine a series of breakpoints within the dataset and98

fit the most appropriate model to each section of the data. Determining a more robust way to statistically99

model iceberg size distributions represents an important avenue for future work but is beyond the scope of100

this investigation.101

In an attempt to address some of the limitations discussed, the iceberg size distributions were also compared102

using the powerlaw library for Python (Alstott and others, 2014), which is designed to implement the same103

statistical solutions as the R version but allows the comparison of additional distributions. The companion104

paper by Alstott and others (2014) also provides a more nuanced discussion for using the package to fit105

measured size distributions. A comparison of outputs from the poweRlaw and powerlaw packages for the106

2013 08 31 iceberg size distributions confirms the dependence of the fitted parameters on the chosen xmin107

value but otherwise produces similar results. An inspection of the KS values for each possible xmin value108

shows that the absolute minimum chosen by the software is very similar to several other local minima and109

thus choosing a smaller xmin value that includes more of the data is not unreasonable (Alstott and others,110

2014). The use of a smaller xmin value also does not change the conclusion that neither a power law nor111

a lognormal distribution provides a better fit to the data. Further, the use of the powerlaw library enables112

confirmation that neither a stretched exponential (i.e. Weibull distribution) nor an exponential provide a113

better fit to the data.114

To characterize our data, we fit power law size distributions to all datasets using an xmin value of 1800.115

We acknowledge that this likely influences the fit parameter values but argue that it effectively limits data116

loss associated with high xmin values while minimizing the influence of large fluctuations in the smallest117

size fractions of icebergs. We choose this approach because, although in some cases a lognormal distribution118

might be more appropriate for describing the data, in general this relationship is tenuous and this approach119

provides consistency that enables comparison across our entire dataset as well as with previously computed120

values.121
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