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SUPPLEMENTARY MATERIAL
Estimating snow melt prior to field data collection
Positive temperatures and clear skies occurred between 11–16 May 2016, which we suspect resulted in melt occurring on
Glacier 13. The snow in the lower part of the ablation area of Glacier 13 was isothermal and showed clear signs of melt
and metamorphosis. To estimate the total amount of melt we use a degree-day factor for melting snow (Braithwaite, 2008)
and temperatures from a high-elevation site that have been scaled for the minimum elevation of Glacier 13 (2054 m). The
high-elevation weather station is located close to the head of the Kaskawulsh Glacier (UTM Zone 7 565512 E 6729971 N),
approximately 50 km from Glacier 13, at an elevation of 3050 m. Data for this weather station is publicly available at https:
//datagarrison.com/users/300034012631040/300234060337540/temp/DataGarrison_Sat_Station_015.txt. A lapse
rate of –6.5 K km−1 elevation is applied to the temperature recorded at the high-elevation weather station to obtain
approximate air temperature at the toe of Glacier 13. We find that a total of six days throughout the accumulation season
experienced positive temperature and five of those days occurred between May 11–15. To obtain hourly melt the hourly
temperatures that exceed 0◦C are converted to equivalent days and then multiplied by a degree-day factor for melting
snow equal to 4 mm day −1 K−1 (Braithwaite, 2008). The sum of all melt is found to be 0.006 m w.e. This amount of melt is
estimated for the toe of Glacier 13 so melt at higher elevations is likely smaller. Since the estimated melt is small compared
to observed bw and estimated Bw on Glacier 13 (Table 4), no corrections were made.

Topographic parameters
Topographic parameters are easy-to-calculate proxies for physical processes, such as orographic precipitation, solar radiation
effects, wind redistribution and preferential deposition. We derive all parameters (Table S2) for our study from a SPOT-5
DEM (40 × 40 m) (Korona and others, 2009). Two DEMs are stitched together to cover the Donjek Range. An iterative
3D-coregistration algorithm (?) is used to correct the horizontal (∼2 m E, ∼4 m N) and vertical (5.4 m) discrepancy between
the two DEMs before stitching. See Pulwicki (2017) for details regarding DEM stitching. See Pulwicki (2017) for full details
on topographic parameter calculation.

DEM smoothing
Visual inspection of the curvature fields calculated using the DEM indicated that the spatial patterns of curvature were
noisy and did not vary smoothly. Olaya (2009) states that the curvature calculation is sensitive to noisy data and a
smoothing filter must often be applied to the DEM prior to calculation. Curvature, as well as slope, aspect and northness,
are all sensitive to noise because calculating these parameters involves calculating the first and second derivatives of the
elevation which are highly dependent on the size of the DEM cell. To minimize the effect of noise on these four parameters,
a smoothing filter was applied to the DEM and this smoothed DEM was used to calculate curvature, slope, aspect and
northness. The unsmoothed DEM was used to determine elevation and Sx because these parameters do not depend on a
topographic length scale and their values are not as sensitive to the size of the DEM gridcell.

To choose a smoothing algorithm and window size, we applied a number of smoothing algorithms and chose the
combination that resulted in the highest correlation between topographic parameters and point-scale winter balance values.
Window sizes of 3×3, 5×5, 7×7 and 9×9 gridcells were used. For all sizes, inverse-distance weighted smoothing and
Gaussian smoothing were poorly correlated with Bw. The smoothing algorithm that used 7×7 window resulted in the
highest correlation between curvature (second derivative) and Bw as well as slope (first derivative) and Bw. The window
size that produced the highest correlation of Bw values and curvature for each glacier differed, but for all Bw values taken
together, the 7×7 window resulted in the highest correlation. For slope, all three glaciers showed the highest correlation
with a 7×7 smoothing window, but not when combined. To maintain consistency between parameters, the 7×7 smoothing
window was chosen and applied to the DEM for calculation of curvature (κ), slope (m), aspect (α) and “northness” (N).

Fig. S1: (a) Curvature found using the original DEM. (b) Curvature found using the smoothed (7×7 window moving average) DEM.

https://datagarrison.com/users/300034012631040/300234060337540/temp/DataGarrison_Sat_Station_015.txt
https://datagarrison.com/users/300034012631040/300234060337540/temp/DataGarrison_Sat_Station_015.txt
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Table S1: Values of azimuth (A) and maximum search distance (dmax), that correspond to the Sx that had the highest absolute
correlation to observed Bw.

A

(◦ from North)
dmax
(m)

Correlation
Coefficient

Glacier 4 85 300 −0.26
Glacier 2 330 300 0.56
Glacier 13 280 200 0.28

Wind redistribution parameter
Sx represents wind exposure/shelter and requires the identification of a cell within a certain angle and distance from the
cell of interest that has the greatest upward slope relative to the cell of interest (Winstral and others, 2002). The identified
cell is referred to as the maximum upwind slope. Negative Sx values represent exposure relative to the shelter-defining
pixel, which means that the cell of interest is higher than the cell with greatest upwind slope. Conversely, positive values
represent sheltered cells. To determine Sx values, the following equation is used

SxA,d max(xi, yi) = max
[
tan−1

(
z(xv, yv) − z(xi, yi)

[(xv − xi)2 + (yv − yi)2]1/2

)]
, (1)

where A is the azimuth of the search direction, (xi, yi) are the coordinates of the cell of interest and (xv, yv) are the set of
all cell coordinates located along the search vector defined relative to (xi, yi) and by the azimuth (A) and maximum search
distance (dmax). Code for this calculation was provided by Adam Winstral (2016, personal communication). As done by
McGrath and others (2015), we compute Sx at 5◦ azimuth increments for dmax distances of 100, 200 and 300 m. These
values are then correlated (Pearson correlation) with observed values of point-scale winter balance. The Sx values from the
combination of azimuth and dmax input values that have the highest correlation are used for subsequent analysis (Table
S1). The code for calculating Sx requires a UTM raster formatted to ASCII in ArcGIS.
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Fig. S2: Distribution of sampled (gray bars) and all (white bars) topographic parameters for over Glacier 4 (left column), Glacier
2 (middle column) and Glacier 13 (right column). From top to bottom, topographic parameters are elevation (z), distance from
centreline (dC), aspect (α), slope (m), northness (N), mean curvature (κ), and wind redistribution (Sx).
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Fig. S2 (Cont.): Distribution of sampled (gray bars) and all (white bars) topographic parameters for Glacier 4 (left column), Glacier
2 (middle column) and Glacier 13 (right column). From top to bottom, topographic parameters are elevation (z), distance from
centreline (dC), aspect (α), slope (m), northness (N), mean curvature (κ), and wind redistribution (Sx).
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šo
vá
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Additional results

Table S3: Snow density values used for density assignment methods. Density values derived from snow pit (SP) densities and Federal
Sampler (FS) densities. Four interpolation methods are chosen: (1) using a mean snow density for all three glaciers (S1 or F1), (2) using
a mean density for each glacier (S2 or F2), (3) using a regression between density and elevation (S3 or F3), and (4) inverse-distance
weighted mean density (not shown, S4 or F4). Standard deviation (STD) is given for S1/F1 and S2/F2 values and R2 values are given
for density–elevation regressions (S3/F3).

SP-derived
density (kg m−3)

FS-derived
density (kg m−3)

Mean STD or R2 Mean STD or R2

S1 or F1 342 26 318 42

S2 or F2
G4 348 13 355 18
G2 333 26 286 34
G13 349 38 316 41

S3 or F3
G4 0.03z + 274 0.16 −0.16z + 714 0.53
G2 −0.14z + 659 0.75 0.24z − 282 0.72
G13 −0.20z + 802 >0.99 0.12z + 33 0.21

Fig. S4: Boxplot of gridcell-averaged winter balance on three study glaciers. Red line indicates median, blue box shows first quantiles,
bars indicate minimum and maximum values (excluding outliers) and red crosses show outliers, which are defined as being outside of
the range of 1.5 times the quartiles (approximately ±2.7σ).
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Fig. S5: Boxplot of the standard deviation of measured winter balance in one DEM gridcell. Red line indicates median, blue box shows
first quantiles, bars indicate minimum and maximum values (excluding outliers) and red crosses show outliers, which are defined as
being outside of the range of 1.5 times the quartiles (approximately ±2.7σ).
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Fig. S6: Standard deviation (STD) of distributed winter balance (bw) arising from (top row) gridcell-scale variability, (middle row)
method of density assignment and (bottom row) interpolation uncertainty found using linear regression. Ice-flow directions are
indicated by arrows.
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method of density assignment and (bottom row) interpolation uncertainty found using ordinary kriging. Ice-flow directions are
indicated by arrows.
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REGRESSION KRIGING
Background
Regression kriging (RK) estimates values between measurement locations by combining a regression estimate with a kriged
estimate of the regression residuals (Hengl and others, 2007). First, the regression estimate is determined using auxiliary
variables (e.g. topographic parameters). Then, OK is used to interpolate regression residuals, which have an assumed mean
of zero. The two surface estimates are then added. The final estimate can be written as

ẑ(x0) = m̂(x0) + ê(x0) (2)

=
p∑

k=0

β̂k · qk(x0) +
n∑

i=1
λi · e(xi), (3)

where m̂(x0) is the regression estimate and ê(x0) is the interpolated residual, β̂k are the estimated regression coefficients,
qk(x0) are the regressors, p is the number of regressors, λi are the kriging weights for the residuals and e(xi) is the residual
at xi.

RK can be thought of as an intermediate between pure kriging (no auxiliary variables) and pure regression (small
residuals) and can be more strongly skewed to either end-member based on the strength of the regression correlation (Hengl
and others, 2007). Separating the trend analysis and kriging steps has the advantage of being able to test interpolation
methods that go beyond a basic linear trend. Kriging combined with regression has been found to produce better estimates
of spatial fields when compared to OK and co-kriging (e.g. Knotters and others, 1995).

Methods
Distributed bw values are first estimated with a LR of gridcell-averaged bw on topographic parameters, as described in
the manuscript. Second, the residuals at each measurement location are calculated and the distributed residuals are found
using OK, as described above. The LR and OK-estimated residuals are then added together to obtain the final distributed
bw.

Results
The range of residual values is highest on Glacier 4 and lowest on Glacier 13 (Figure S8). Extreme values are located in
the accumulation area of Glacier 4 with both strongly negative and strongly positive residuals located within a kilometre
of each other. The low sampling density in the accumulation area biases the interpolation of residuals to fit the over- and
under-estimated values of Bw at the two uppermost sampling locations. Residuals show less variation on Glacier 2, although
relatively large residuals of approximately ±0.4 m w.e. are present in the upper ablation area along the ice margins. Glacier
13 has the smallest range of residuals. The glacier-wide value of distributed residuals is positive for Glacier 4, indicating
that the distributed residuals will increase the overall estimate of Bw. Conversely, the glacier-wide residual for Glacier 2 is
negative and will decrease the estimated Bw.

Spatial patterns in estimated Bw found using RK are similar to those found with both OK and regression (Figure S9)
for Glaciers 2 and 13. The RK estimate is closer to the linear regression for Glaciers 2 and 13 due to the relatively high
explanatory power of the regressions for these glaciers. The distributed Bw on Glacier 4 found using RK is somewhat
uniform in the central region of the glacier, but the accumulation area has considerably larger estimates of Bw compared
to OK and regression. The spatial patterns of distributed Bw on Glacier 4 more strongly resemble those of the distributed
residuals (Figure S8). This supports the idea that Bw estimates are more strongly affected by the kriged residuals because
the regression had low explanatory power. RK applied to Glacier 4 is therefore closer to OK. The marked alteration
of the regression estimate by the kriged residuals arises from the large and opposing residual values at the upper-most
measurement locations. Higher Bw values in the accumulation area result in a much higher estimate of glacier-wide Bw.
The large effect of two measurement locations on the glacier-wide Bw highlights the over representation of individual data
points in under-sampled regions.

Both OK and RK produce a gradient in glacier-wide Bw across the mountain range (Figure S9). Glacier 4 has the highest
glacier-wide Bw and Glacier 13 has the lowest glacier-wide Bw. However, the Bw gradient is steeper for OK estimates when
compared with RK estimates. Glacier 4 has a similar glacier-wide Bw between the two methods but glacier-wide Bw on
Glaciers 2 and 13 are much lower than on Glacier 4.

RK produces R2 values almost as large as those of OK (Figure S10, Fig. 6). The correlation coefficient for Glacier 2
is especially high, with more than 80% of the observed variance explained by the RK model. Glacier 4 has the lowest
correlation coefficient but this value is considerably higher than that arising from topographic regression alone.
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Fig. S8: Distributed Bayesian model averaging residuals estimated by regression kriging (RK). Arrows indicate glacier flow direction
and black dots show snow-depth sampling locations. Dashed line indicates approximate ELA.

Fig. S9: Winter balance estimated by adding kriged regression residuals to winter balance estimated using topographic regression with
Bayesian model averaging. Arrows indicate glacier flow direction and observed values of winter balance are overlain on the maps.

Fig. S10: Comparison of estimated (regression kriging, RK) and observed winter balance (Bw) for study glaciers. The Bw values are
calculated using inverse-distance weighted snow-pit densities (S4).
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Mitášová H and Hofierka J (1993) Interpolation by regularized spline with tension: II. Application to terrain modeling and surface
geometry analysis. Math. Geol., 25(6), 657–669 (doi: 10.1007/BF00893172)

Molotch N, Colee M, Bales R and Dozier J (2005) Estimating the spatial distribution of snow water equivalent in an alpine basin
using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrol. Process., 19(7),
1459–1479 (doi: 10.1002/hyp.5586)

Olaya V (2009) Basic land-surface parameters. Dev. Soil Sci., 33, 141–169 (doi: 10.1016/S0166-2481(08)00006-8)
Pulwicki A (2017) Multi-scale investigation of winter balance on alpine glaciers. Master’s thesis, Simon Fraser University
Winstral A, Elder K and Davis RE (2002) Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J.

Hydrometeorol., 3(5), 524–538 (doi: 10.1175/1525-7541(2002)0030524:SSMOWR2.0.CO;2)


	
	
	
	


