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1 Generation of nonuniform grids

There are numerous ways of generating grid for complicated geometries. The stretch-
ing transformations employed here are taken from the family of transformations
proposed by Roberts (1971).

If the plume extends down to the bottom of the two-dimensional box, then the
following two simple independent transformations are used to refine the grid along
the plume and at the top and bottom of the chamber.

a. To refine along the plume, take
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Here z. is a point between z = 0 and z = A, and 7 is the stretching parameter

] 0 <7 < oco.

which varies from 7 = 0 (no stretching) to large values which generate the greatest
refinement near z = z..

b. To refine at the top and bottom of the chamber:
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This transformation refines the mesh equally near y = 0 and y = H. [ is the

y = H/2 1<B<oo. (2)

stretching parameter related to non-dimensional boundary layer thickness. B varies
from large values (no stretching) to 1 corresponding to most refinement. Figure 1
shows a stretched grid in the physical space when H =1 and A = 1.

If the plume extends only down to y = h > 0, then the transformation given

by (1) is used to refine along the plume and the following two transformations are
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Figure 1: Grid refined along the vertical mid-plane and at the top and bottom of
the chamber. The stretching parameters in (1), (2) are z. = 1/2, 7 =2.5, § = 1.2.
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Figure 2: Grid refined along the vertical mid-plane and at the top (y = 1) and
interior depth (y = k) of the chamber. The stretching parameters in (1), (3)-(4) are
zo=1/2, 7=25, =12 and h=023.



manipulated to give a mesh refined along the top and bottom of the plume:
BlB+1)/(B-1)]"-8

= By Groie-np TSP ®)
)

where

CEESNERIC GEBICE)

- 1+(8XP(”T)—1)(h/Hz)] 5

2T

Here Hy + H; = H. The stretching parameter 3 varies from large values (no stretch-
ing) to 1 corresponding to greatest refinement at y = H and increasing 7 refines
the grid near y = h, the bottom of the plume. Figure 2 shows the refined grid for
H =1,A =1 and h = 0.3. The stretching parameters 7 for (1) and (4) are both
taken as 2.5.

2 Code performance

It is clear that if the cell swimming speed is zero, then the equations of biocon-
vection reduce to the usual equations for heat convection problem. To validate
our code, written in terms of stretched coordinates, the code has been run for the
following problem with stretching and without stretching. The problem is that of
two-dimensional heat convection in a rigid square cavity defined by 0 <z <1, 0 <

y < 1. All the variables are dimensionless. The governing equations are
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where R is the Rayleigh number, B, is the Prandtl number and
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If n is the outward drawn normal at any point on the unit square S, then the

boundary conditions are
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The stretching function given by (2) is chosen to refine the mesh near the four
rigid boundaries. The grid geometry in the uniform computational space is shown
in figure 3. The choice of the control volume automatically satisfies the boundary

conditions on 7.
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Figure 3: Staggered grid geometry for the heat convection problem. [ = 0 and I =
M represent the lateral walls. J=0 and J=N represent the horizontal walls.

Two set of runs were made with the following values of the stretching parameter



B subject to the convergence criterion
max |Ti; — T <1078
a. B =10°, i.e. uniform grid.
b. B = 1.5, i.e. grid refined near the boundaries.

The properties of the solutions of heat convection are compared with the bench-
mark solutions given by De Vahl Davis (1983) (see tables 1-6). In each table, the

quantities given are
(i) the magnitude of the stream-function at the mid-point of the cavity

(ii) the maximum value of u on the vertical mid-plane (z = 0.5), together with its

location.

(iii) the maximum value of v on horizontal mid-plane (y = 0.5), together with its

location
(iv) the average Nusselt number Nug on the vertical boundary x = 0

(v) the maximum and minimum values of local Nusselt number on z = 0 and its

location.

The maximum and minimum values and their locations are computed by quadratic
interpolating polynomial.

Figure 4 shows the streamlines for R = 10®-10° and the corresponding maps of
temperature are shown in figure 5. These figure are based on the finest uniform
grid, 31 x 31.

At R = 103, streamlines are those of a single vortex with its centre in the centre
of square cavity. The isotherms are almost parallel to the heated wall. The effect of
convection is seen as the departure of the isotherms from the vertical. At R = 10%,
the central streamline is distorted to an elliptic shape and at R = 10°, two secondary
vortices appear with its long axis along the direction of the flow. The temperature
gradient is severe along the wall but almost zero in the central region.

It is seen from the tables 1-6 that as the number of grid points increases, the
solutions tend to bench-mark solution in both the stretched and unstretched cases.
At higher Rayleigh numbers (see tables 5 and 6), the code with stretching performs
better than that one without stretching, though the values of Numax and N Ui



Table 1: Properties of the solution of the heat convection problem using a uniform
grid for the case P, = 0.71 and R = 10°

Nodes |1,blm d | Umax Umax Nuo Numax Nupi,
y(z =0.5) =z(y=0.5) y(z =0) y(z=0)
11x 11 1.169 3.616 3.552 1.126 1.537 0.690
0.807 0.173 0.095 0.957
21x 21 1.170 3.625 3.665 1.118 1.510 0.693
0.811 0.175 0.092 0.979
31x 31 1.172 3.636 3.681 1.118 1.507 0.692
0.812 0.180 0.091 0.989
Bench-mark 1.174 3.649 3.697 1.117 1.505 0.692
solution 0.813 0.178 0.092 1

Table 2: Properties of the solution of the heat convection problem using a grid
refined along the boundaries for the case P, = 0.71 and R = 10°

Nodes |¢nnd| Umax Ymax Nuo Numax Nupiy
y(@=05) a(y=05) yz=0) yz=0)
11x 11 1.191 3.707 3.649 1.067  1.458 0.652
0.818 0.187 0.094 0.961
21x 21 1.179 3.652 3.694 1.088 1.470 0.672
0.817 0.181 0.087 0.986
31x 31 1.177 3.651 3.697 1.098  1.481 0.679
0.812 0.179 0.092 0.994
Bench-mark 1.174 3.649 3.697 1.117 1.505 0.692

solution 0.813 0.178 0.092 1




Table 3: Properties of the solution of the heat convection problem using a uniform
grid for the case P, = 0.71 and R = 10*

Nodes Wmi dl Umax Ymax Nup  Numax Nupgj,
y(z=05) s(y=05) ¥z =0) y(z=0)

11x 11 5.135 16.183 18.577  2.508  4.187 0.582
0.812 0.141 0.144 0.982

21x 21 5.069 16.071 19.442 2.296  3.701 0.589
0.819 0.125 0.139 0.986

31x 31 5.068 16.130 19.537  2.261  3.596 0.588
0.824 0.117 0.141 0.992

Bench-mark 5.071 16.178 19.617 2.238 3.528 0.586
solution 0.823 0.119 0.143 1

Table 4: Properties of the solution of the heat convection problem using a grid
refined along the boundaries for the case P, = 0.71 and R = 10*

Nodes |¢mi dl Umax Ymax Nuy Numax Nupip
y(z=05) =z(y=0.5) y(z=0) y(z=0)
w11 5.189 16.499 19.908  2.365  3.970 0.560
0.823 0.117 0.143 0.977

21x 21 5.098 16.208 19.558 2.217  3.551 0.572
0.825 0.121 0.140 0.990

31x 31 5.084 16.184 19.648 2.214  3.509 0.576
0.825 0.117 0.143 0.996

Bench-mark 5.071 16.178 19.617 2,238  3.528 0.586
solution 0.823 0.119 0.143 1




Table 5: Properties of the solution of the heat convection problem using a uniform
grid for the case P, = 0.71 and R = 10°

Nodes l"bmidl Ymax Umax Nug  Numax Nupgj,
y(z =0.5) z(y=10.5) y(z=0) y(z=0)
11x 11 10.431 37.21 76.19 5.900 10.181 0.611
0.834 0.050 0.087 1
21x 21 9.264 34.87 67.62 5.048  9.356 0.701
0.853 0.075 0.075 0.992
31x 31 9.141 34.58 67.28 4.736  8.532 0.723
0.856 0.067 0.079 0.991
Bench-mark 9.111 34.73 68.59 4509  T.717 0.729
solution 0.855 0.066 0.081 1

Table 6: Properties of the solution of the heat convection problem using a grid
refined along the boundaries for the case P, = 0.71 and R = 10°

Nodes |¢mid| Umax Umax Nug Numax N Umin
y(z=0.5) z(y=0.5) y(z =0) y(z=0)
11 11 9.755 37.02 61.08 5.760  10.682 0.585
0.846 0.050 0.098 1
21 21 9.181 34.75 67.68 4,734  8.665 0.702
0.852 0.059 0.079 0.990
31x 31 9.133 34.68 68.51 4.552 8.043 0.714
0.856 0.061 0.079 0.993
Bench-mark 9.111 34.73 68.59 4.509 T7.717 0.729

solution 0.855 0.066 0.081 3
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Figure 4: Streamlines for the heat convection problem at different Rayleigh numbers
R (Pr=0.71): (a) R=10% (b) R=10% (¢) R=10°

for 11 x 11 grid are less accurate for the stretched grid. Thus at higher Rayleigh
numbers boundary layer becomes important (evident from figures 4 and 5) and, to
resolve the boundary layers, we need to use a stretching function if small number of

grid points are used in the calculation.
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Figure 5: Isotherms for the heat convection problem at different Rayleigh numbers
R (Pr=0.71): (a) R=10% (b) R=10% (c) R =10°



