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Appendix B. Disturbance equations

~

The non-zero entries of WpA(t) in equation (3.2) for the CCMAC and DMAC cases are given below. The
operator @ represents the derivative w.r.t. the gap coordinate p. The matrix @(t) has —1 on the diagonal
corresponding to the constitutive equations and zeros elsewhere. The EVSS formulation (not shown here) is

derived by substituting
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Frs = Bps Hja Wpi, + WwpD.,
o9 = g,
7‘:82 = i&z T Wpﬁﬂi

Tez = iz.z *+ 2[1,}0 Wp1,,
where the components of ¥ represent the elastic part of the extra stress tensor 7.
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Wp Az, =Wp

Wp Az s =1+ iaWe,(1 — p) cos(witr)
iaWp (2We, Wp cos(wi t;) + 3wy We, Wp® sin(w; t1) + w,® We, Wp® sin(w; 1))
(14 w? 7£er2)2
We. cos(wy t;)  w; We, Wp sin(w; #;)
B (14 w2 Wp?) B (1 + w2 Wp?)
Wp Az 1 = We, cos(wity)

WpAz 7 =— + Wp* D

WpAz s =—ialWp ( ) —WpD

WpAs sz =1+iaWe, (1 - p) cos(wity)
iaWp (We.” + 4w We,* Wp® + We,” cos(2wi #;) — 2w, We.> Wp® cos(2w t1))
(1+4w? Wp?) (14 w2 Wp?)
3wy We,? Wp? sin(2w t;) :
- = = —iaWp
(1 + 4w, 2 Wp ) (1-!-L;J12 Wp )
WpAg‘g = —WpD

WPAa,T =

Wp A4‘2 =2 Wp

WpAsq=1+iaWe, (1 - p) cos(witi)
2iaWp (2 We, Wp cos(w t1) + 3w We, Wp? sin(w; ;) +w:® We. Wp* sin(w; 1))

+2Wp*D
(1 + w2 Wp?)?

WpAyg = —

W}‘)As,g = Wez COS((-U],&)
Wp As3 = Wp

WpAss =1+1aWe, (1— p) cos(witi)
iaWp (Wez2 + 4wy ? We,? Wp® + We,? cos(2wy t1) — 2w, % We,® Wp® cos(2wi t1))

WpAs g = —
Bsp (L + 4w Wp?) (1+ w2 Wp?)
2 2 p .
3 3wy We, IZp sin(2 wy t;)2 —iaWp+Wp (We,, cos(wy t;) w, We, Wp sm(u;l t;)) D
(14 4wi? Wp?) (1+w? Wp?) (1 + w2 Wp?) (1 4wy 2 Wp?)
Wi As o = ia (2We, Wp cos(wi t;) + 3w We, Wp? sin(w; t;) + wi® We, Wp* sin(w; t;)) WD

(14 w? sz)z
W’pAa‘g = 2W€z COS(wlh)

WpAge =1+1aWe, (1 - p) cos(wit1)
2iaWp (We.? + 4w, ? We,?2 Wp? + We,? cos(2wy t1) — 2w, We,2 Wp? cos(2w; t;))

Wpés’g - (14 4wi2 Wp?) (1+wi? Wp?)
3wy We,? Wp? sin(2w ) (Wez cos(wy t1)  wy We, Wp sin(w t;)) D
B (1+4w?2 Wp?) (1 +wi2 Wp?) (1+S) (1 4+ w2 Wp?) (1+w; 2 Wp?)
—2iaWp

WpA;1 =D WpArz=ia WpAry=-1 WpAr;=SWp (—02 + D2) WpAz10=-D
WpAss =D WpAgs=ia WpAsg=SWp(—a®+D?)
WpAgs =D WpAge=ia WpAgg=SWp(—a®+D?) Wphgi =-a

WpAwr=D WpApe=ia
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DMAC flow: Given below are the nonzero components of Wp A (t) that correspond to the constitutive equation.
The components corresponding to the momentum and continuity equations,as well as the form of the matrix E
are the same as those in the CCMAC case given above. The equations for the DAC case may be recovered by

setting w; to zero.

WpA;=1+iWe.a (1 - p) cos(wits)
21 We, Wpa (cos(wi ty) + Wpw, sin(wit1))

WpAi7 =
Pl 1+ Wp?w?)

—-2WpD
Wp Az = Wp(—1+ 2p)

WpAss=1+1aWe, (1- ,O) cos(wltl)
(1+ Wp?w?)? +2iWe, a(—1+2p) cos(wit)
L+ W o)
W iWe, Wpa(—1+2p)w; (3 + Wp?w?) sin(wit;)
1+ Wi o))?
cos(wyt1) + Wpw; sin(w;ty)
(1 + Wp?w?)

WpAyz = —WP2 -

+ Wp? (-1 +2p)D

Wp Ay g =ia We. Wp - WpD

Wp A3 1 = We, cos(witr)

WpAszz=1+iWe,a(l— p) cos(wity)
(1 + We2 + Wp? w?)(1 + 4Wp? w}) — We? (=1 + 2 Wp? w}) cos(2wit1)
(1+4Wp2w?)(1 + Wp? w?)
3We2 Wpw; sin(2wity) We, Wp (cos(wity) + Wpw sin(wit;)) D
(1 +4Wp2 w?)(1 + wi Wp?) 1+ Wp?wi)

WpAs7=—iaWp

—iaWp
WpAs g =-WpD
WpAso =2Wp(-1+2p)
WpAsq=1+iaWe, (1 - p) cos(ws t1)

Wp As7 = 8Wp® (-1 +2p)
(=1 +2p)(2cos(wity) + Wpw; (3 + Wp? wi) sin(wity)) N
(1 + Wpwi)

WpAyg = —2i We, Wp? o
2Wp? (-1+2p) D

Wp As » = We, cos(wit;)

WpAs 3 =Wp(-1+2p)

WpAss =1+iaWe, (1—p) cos(wit)
2 cos(wit1) + Wpwi (3 + Wp? w?) sin(w;ty)
(1+ Wp? w?)

Wp As 7 = 2 We, Wp?
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(1+ We? + Wp? w})(1 + 4 Wp? w}) — We? (-1 + 2 Wp® w}) cos(2wyt;) + 3 We2 Wpw; sin(2wi t1) i

pAss =iaWp 1+ 4Wpw?)(1 + Wp? w2)

We. Wp (cos(wity) + Wpw; sin(wit1)) D
(1+ Wp*wi)
2 cos(wity) + Wpw; (3 + Wp? w?) sin(t; wi)
(1+ Wp?w?)?

Wp As g =i We, Wp® a(—1 +2p) +Wp® (-1+2p) D

Wp Ag 3 = 2 We, cos(witr)

WpAgs =1+ iWe.a(l — p) cos(wits)
(14 We2 + Wp? w})(1 + 4 Wp? w}) — We? (=1 + 2Wp? w3) cos(2 wit)
(1+4Wp2w?)(1+4Wp?w?)
3We2 w; Wp sin(2w 1)
(1+4Wp?wi)(1+ 4 Wp?wi)

WpAﬁ'g =-23 Wpa

cos(wi 1) + Wpw; sin(2wity) D

~2iWge (1+ Wp? w?)

+2We, Wp

DAP flow: Below are given the nonzero components of the linear operator WpL for DAP flow. Once again,
the momentum and continuity equations are the same as for the CCMAC case, as are the terms in the matrix

E.

WpLii=1+We,iap(l—p)

WpLy7=2i, We, Wpa(—-1+2p)—2WpD

WpLyy = Wp(—1+2p)

WpLso=WplLi

Wp Loz = —2Wp* —2i We, Wp? a (=1 +2p)* + Wp? (-1+2p) D
WpLyg =iWe, Wpa(-1+2p)— WpD

WpLsy = We, (—1+2p)

WpLss=WplLi,

WpLsz=—2We,Wp+8ipWe2Wpa(l —p) —iaWp(1+2We2) + We. Wp(-1+2p) D
WpL3o=1We,a(-1+2p)D

WpLsp=2Wp(-1+2p)

WpLya=WpLi,

WpLyr=8Wp*(—-1+2p)

WpLag = —4iWe, Wp? a(1 — 2p)? +2Wp?(-1+2p) D
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WpLs = We, (—1+2p)

WpLsz =Wp(-1+2p)

WpLss=WpLy,

Wp Ls 7 = 8 We. Wp (=1 + 2p)
WpLsg=—iaWp(l+2We?)+8ipWe2Wp(1—p) +We.(—-1+2p) D
WpLsg = —2i We, Wp a(1 — 2p)* + Wp*(—1+2p) D

WpLes =2We, (—1+2p)

WpLeg =WpLi,

Wp Ls7 = 8WeZ Wp(—1+2p)

WpLeo = —2iaWp(1+2We2 (1—2p)2) + 2 We, Wp(—1+2p) D



