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can be represented as a superposition of parabolic and elliptic distributions, which are
the distributions which give the simplest explicit formulae. The method has been applied
to a practical propeller case with a finite hub, and it was found that in the hub region
there is slipstream expansion followed by contraction to the hub radius far downstream.
The method is suitable for calculation of the slipstream effect on complex configurations
by embedding it in a suitable boundary integral method, and can be extended into the
compressible flow regime using compressibility corrections.

The method applied here to the actuator disk will also solve all the analogous elec-
tromagnetic problems associated with both semi-infinite and finite solenoids and radial
distributions of solenoids. The magnetic fields induced by a semi-infinite solenoid distri-
bution are exactly analogous to the slipstream solutions presented here, and the fields
induced by a radial distribution of solenoids of finite length is obtained by superposition
of two semi-infinite distributions of opposite sign and axial relative displacement equal
to the solenoid length.

The author would like to thank Dr. Christopher Grigson and Dr. Lars Soland for
reading the manuscript and for their encouragement during the course of the work.
Thanks are also due to the referees for their helpful suggestions.

Appendix A. Evaluation Of Bessel-Laplace Integrals

The solution of the actuator disk problem in most cases reduces to evaluation of inte-

grals of the form

Ty = /e"lzls’\J#(sRa)J,,(sr)ds. (A1)
0
where A, ¢ and v are integers. The simplest case is when A = 0 and g = v. For this case,
the integral reduces to the basic formula below (Watson 1944)

4
Towm = == Qu-3(0), (42)
where — Bt £
frew=———"—""—"—":
2rR,

This has the particularly simple integral representation

1 r tdi
I(D,u,v) = == — . (A 3)
™) \/r?+ R2 + 22 — 2rR, cost

Legendre functions of half-integral order such as the above can always be expressed in
terms of complete elliptic integrals E(k) and K(k) where

4rR, 2 — k2

p. .. e =28
(Ra+7)%+ 22 2,

Abramowitz and Stegun (1972) give Q_1(w) and Q%(w) as in terms of complete elliptic
integrals as: ’

Q_;(w) = kK(k) (A4)
and

03 = E= Bk - Zuw). (45)
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Elliptic integral representations for all other Legendre functions of half-integral order can
be obtained from those above using the recursion relation of Hobson (1896)

(2v+ 1)

Qua(z)= 2Q,(2) = —=~Qu-1(2). (A6)
This gives the recurrence below for Bessel—Laplace mtegra.ls
4(u - l)w (2v —3)

I(o,y,y) (2 I(o v=1,v=1) = mf(o,u-z,u—zj- (A 7)

Hobson'’s recurrence relation is unstable for upward recursion for all w > 1, so in numerical
work downward recursion using Miller’s algorithm must be used (Abramowitz and Stegun
1972, Press et al 1992). The recursion sequence can be normalized using the elliptic
integral formula for (o 0,0).

For A a positive integer, then Iy, ,) can be evaluated using the formula below given
by Prudnikov et al (1992)

A
Iy = (ﬁd |z IAQv—l( ). (A8)

This can always be expressed in terms of the Associated Legendre functions through the
relation below (Gradshteyn and Ryzhik 1980)

Q)_y(z) =(-1)"(1-27)3 (A9)
For the particular case of A = 1, then this reduces to
|z | K*(Rar)~%
Iy )= —————F——2— 1 (w). A10
(1vw) 2ﬂ_m QV"’E( ) ( )

The Associated Legendre functions above can always be reduced to Legendre func-
tions and hence expressed as elliptic integrals through the recursion relation below
(Abramowitz and Stegun 1972)

QU (2) = (2" - 1)7# {(v — WzQL(z) - (v + WQU_1(2)} - (A1)

Hence all Bessel-Laplace integrals of the form I, ) for A a positive integer or zero
can be expressed in terms of elliptic integrals, although the formulae may be relatively
complex. Equations A 10 and A 11 give the recurrence relation:

(2v—1) |z | k*

I(l,v’,b') = W (I(O,u—l,u—l] - WI(D,u,p)) . (A 12)

For A = 0 and u # v, formulae in terms of elliptic integrals can derived from the
formulae above using the standard recursion relations for Bessel functions if a formula can
be obtained for the fundamental Bessel-Laplace integral below, which occurs naturally
for the constantly loaded actuator disk

Io,,0) = f e=*?1 11 (s Ra) Jo(sr)ds. (A13)
0
The formula adopted for this integral will then determine all other formulae derived from

it by recursion. There are several formulae available, but the one chosen for the current
study is that using Heuman’s Lambda function given (with a typographical error) by
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Prudnikov et al (1992). The corrected expressions are:

T Ria (1 - QZL%K(;C) _ M) [r < Ra] (A14)

i 33: (—#\/%K(k) . %@) [r> Ral (A15)
—_— | 2|

where § = arcsin (\/(r = }:a)z = 22) : (A 16)

An alternative expression for (o 1,0) in terms of the Lambda function is given by Byrd
and Friedman (1971). It is extremely useful to have an integral representation of (g 1 o).
From equation A 13 then clearly:

01,0y |, 90,11
LD = ZELD, (A17)

Substituting the integral representation for g 1,1) into equation A 17 and integrating
both sides with respect to r gives finally

2| f cost(Rgcost — r)dt
1(0.1,0)=—| ]/ e ( ; > )2 : (A18)
™y (R2sin 2t + 22)\/r? + R2 + 22 — 2rR, cost
Exchange of r and R, gives
z h cost(rcost — Rg)dt
I(O'U'l):]_"I/ eindt 4 22 : 21 R2 )2 : (419}
™ (r?sin2t + 22)/r2 + R2 + 22 — 2rR, cost

Equation A 19 is a key element in the solution for arbitrary polynomial radial distribu-
tion of load. Applying the method of partial fractions to equation A 18, I(g 1,0y can be
expressed in terms of Legendre complete elliptic integrals of the third kind.

The fundamental recurrence relations for Bessel functions (Watson 1944) are

Jyes(2) + osa(e) = 220, (2) (A 20)

Jv-1(z) = Jopa(z) = 27, (). (A21)
These relations can be used to obtain a number of recurrence relations for Bessel-Laplace
integrals. From equation A 20 it is simple to show that

Jy+1(sRa)J, (s7) = RLJ,,(.SRG)J,_l(sr)

+ o [Jvt1(sRa)yga(sr) = Ju-1(sRa) Ty (s7)] (A22)

Substituting this into the Bessel-Laplace integral I(g,41,,) gives the recursion relation
below, which is valid for v # 0

Loyvt10) = RLI(U,y,y-n + 2%_ [Tav+1w41) — Inv-1,-1)] - (A23)

For numerical work this relation has been found to be stable for downward recurrence.
Equation A 20 also yields the recurrence below which is valid for g # 1 and v # 0

-r

Io,uw) = —Io,p—2) + (’uy R, (Io,u=1,041) + L(0,u=1,0-1)) - (A24)
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An independent recurrence relation can be obtained using equation A 21 and integration
by parts:

2| 7|

.
lowy) = lou-20) = - f(ﬂ.n*l,vﬂ'g(f(o,nwl,v—l)—f(o,u-l,v+1))' (A25)

Combining equations A 24 and A 25 give the recurrence

v +1)|z| v+ 1)R,

o gy o M O D

Topvy = To,up+1) —

(A 26)
For A a negative integer, then for all cases where the integral exists, it can be evaluated
using the recurrence relation below which follows immediately from equation A 20

R,
Texsusay= % (Tot,e410) + Iot1,-1,)) - - (A27)
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