Figure 10: $\Gamma_c (H - 1)^{0.75}$ (10(a)); $k_c (H - 1)^{0.75}$ (10(b)); and $-s_{ke} (H - 1)^{0.5}$ (10(c)) as a function of Λ for $\eta_r = 0$ and $(H - 1) \ll 1$. The solid line is the numerically determined critical velocity, and the broken line is the empirical relation given in Table 1 for $\Lambda > 0$.

Figure 11: The critical velocity Γ_c (11(a)); the wave number of the most unstable mode k_c (11(b)); and the frequency of the most unstable mode $-s_{ke}$ (11(c)) as a function of Λ for $\eta_r = 0$ and $H \gg 1$. The solid line is the numerically determined critical velocity, and the broken line is the empirical relation given in Table 1 for $\Lambda \gg 1$.

Figure 12: The critical velocity Γ_c (12(a)); the wave number of the most unstable mode $k_c (H - 1)$ (12(b)); and the frequency of the most unstable mode $-s_{ke}$ (12(c)) as a function of $(1 - \eta_r)$ for $(H - 1) \ll 1$ and $\Lambda = 0$. The solid line is the numerically determined critical velocity, and the broken line is the empirical relation given in Table 3 for $(1 - \eta_r) \ll 1$.

Figure 13: The critical velocity Γ_c (13(a)); the wave number of the most unstable mode k_c (13(b)); and the frequency of the most unstable mode $-s_{ke}$ (13(c)) as a function of η_r of $H \gg 1$ and $\Lambda = 0$. The solid line is the numerically determined critical velocity, and the broken line is the empirical relation given in Table 3 for $\eta_r \gg 1$.
\[\Gamma_e (H - 1)^{0.75} \]
$k_c (H - 1)^{0.75}$