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6. Asymptotic solutions for logarithmically bladed pump impellers

In this section pump impellers will be considered only, because solutions in
closed—form have not been obtained yet for turbine impellers that are fitted
with curved blades. This is no major imperfection since most radial turbine
impellers found in practice have straight radial blades - discussed
intensively in the previous section — or are closely represented by these
blades, in particular, at the entrance section. In radial turbomachines blade
curvature is often applied to pumps and fans. Solutions in closed—form will be
presented for the fluid velocity tangential at the blades of pump impellers
fitted with logarithmical spiral blades having a low inlet—to—outlet radius
ratio, that is, the case in which the approximation p=(ry/r;)" —0 is

justified.

6.1. Solutions from method of conformal mapping
With 6~ m—28, and using equation (3.15) we obtain from equations (4.7),

(4.13), and (4.17)
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M —-1+4cosz(ﬁ)/n .
v?C(EJ) ~ — [cos(ﬂ + %A}] AR Gin(1N)cotan(30 - 1A) dA
2mn
-m-28
(6.1)
Q 0
03¢(6) ~ ~—tan(p+16) (6.2)
Iy
U{C(B)ﬁ«% (6.3)
as 4 — 0, where
2 1-4c052(ﬁ);"n
M=02r; [cos(ﬁ)] (6.4)

Equations (6.2) and (6.3) are both simple expressions and need no further
explanation. Equation (6.1) will be evaluated somewhat further.
Substituting the trigonometric identity
2sin(30) s in(360+1A)

sin(iA)cotan(i0 - 1)) = —cos(3A) (6.5)
cos(A)—cos(8)




equation (6.1) becomes

M
v c(8) ~ —[%in(%&)l(&)—a’o] (6.6)

21n
as g —0, in which

m-28

sin(10 +1A)
J(6)= [cos(ﬁ+{;/\)

Asin(28)/n

] n1+4cosz{ﬂ),{n

dA (6.7)
cos(A)— cos(8)
-m-28

w-28

2
] -1+4cos (ﬁ)f“e,\gin@ﬁ)/n

Jo= [cos(ﬁ+%»\) cos(4A) dA (6.8)

-m-203

Next using the transformations y=A+28 and o= pg+1A, the integrals (6.7) and

(6.8) become respectively

™
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J(9) =e—2ﬂsin{2ﬁ)fn [COS(%y}] 1+4cos {ﬁ)meysin(zﬁ);‘n sin(160+iy+ 8)

cos(y)—cos(8+28)
=T

(6.9)
/2
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. -1+4cos (3)/n :
J o= 2¢72Fsin(28)/n [cos(cx)} 205I2B)/R 5o (o - B) dox (6.10)

-T/2

Since equation (6.10) is rather simple to evaluate we will treat this

particular integral first; after that equation (6.9) will be dealt with.

Substituting the trigonometrical identity cos(a— )= cos(o)cos(fB)+sin(c)sin(f)

in equation (6.10) and then integrating by parts we obtain

/2
28—2ﬁsin(2ﬁ)f“ 4c052(ﬁ)/ﬂ ;
Ja e [COS(OE)] ezczsm(Zﬁ)fIl do (6.11)
cos(B)
/2

This equation can next be stated equivalently by the beta function. The



equivalent reads (see also Gradshteyn & Ryzhik 1980 p.476)

Qm-zﬁ s in(28)/n

2 2
cos(){2* (912 (14222 2)] By, )}

J. =

o]

(6.12)

in which B(-) is beta function (see for instance Abramowitz & Stegun 1972),

and where

2cos*(B)  sin(28)
x=1+ +i (6.13)
n n

Note that x is a complex number; the beta function B(x,X), however, is
strictly real valued.

To evaluate integral J(f) we rewrite equation (6.9) as

J(B) = ¢ 2Pxin2A)/x [ss'n( B+10)J,(0)+cos(B+ §9)J2(9)J (6.14)
where
T
scos’(B)n . dy
Ji(6) = [608(%y)] sz (6.15)
cos(y)—cos(B+23)
-7
w
—l+4c032(ﬁ)/n ) sin(iy)
Jo(8) = [cos(gy)] e infm dy  (6.16)
cos(y)—cos(0+28)
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Integrating equation (6.16) by parts we may write the integral J,(6)

alternatively as
n

Jo(8) = tan(B)J(8) + ——— J5(6) (6.17)
2cos”(3)
in which
T
* 4(:032(,6),111 sin(28)/n s1 n(y)
Jo(8)= [cos(%y)] ¥ 2dy (6.18)
{cos(y) —cos(9+2ﬁ’)}

-

Then expanding the leading part of the integrals (6.15) and (6.18) in a

Fourier series, i.e.
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[cos(%y)} greiniaplin.., %Bu + Y Bycos(ky)+ Y, Cysin(ky) (6.19)
k=1 K1
where
T
4cos (f)/n _ .
Bi= ?lr J [cos(%f}] e"InZA/R cos(kT) dr (6.20)
-
T
4cos (B)/n .
Ca= % J [cos(%f)] emIR2AR gin(kr) dr (6.21)
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and using equation (5.16) we first of all obtain

| 2
Jl(G)_?r— Y., Bysin(k6+2kp) (6.22)
sin(6+28) k=1

Next, to evaluate the integral J,(f), or actually J ;(9), we consider the

principal value integral

3

sin(ky ) sin(y)
() = 2 (6.23)
cos(y) —cos(d }

:1

Integrating by parts and using equation (5.16) we obtain

()=~ sin(kd) (6.24)

sin(d)

Then substituting Fourier series (6.19) in equation (6.18) we get, using

equation (6.24)
. 27
o) = —————r chksm(k9+2k,8) (6.25)
sin(0+28) k=1

so that equation (6.17) becomes, substituting equations (6.22) and (6.25)

2r 00
J,(8) = {sin(ﬁ} Y Bysin(k6+2k8) -
cos(B)sin(6+28) k=1

kCysin(k6 + 2k
2cos(f) kE1 R ‘8)}

(6.26)

Finally, substituting equations (6.22) and (6.26) in equation (6.14) we obtain



ﬂ,e-zﬁsin(z B8)/n

J(8)= : X
cos(B)sin(8+46)
s i A SOOI S kCysin(k
] +2k3) - in(k6 + 2k 6.27
cos(B+10) kgl ke ?) 2cos(B) kgl AR e

The Fourier coefficients By and Cy in this equation, as given by equations
(6.20) and (6.21), can be worked out somewhat further, simplifying their
computation considerably. Combining the Fourier coefficients to the complex
~ number By +iCy yields

2
J‘iCOS (ﬁ)/ne{sin(gﬁ)jn+ik}1'd7_ (6.28)

™
By +iCy = % J [cos(%r)
m

This integral can be expressed alternatively by the beta function, which gives

(see also Gradshteyn & Ryzhik 1980 p.476)

21—4::052(,8);'11

By +iCy = - (6.29)
[1+%4c02 {’3’} B(x{),x49)
where

L 2cos*(B)  sin(28)

WO — 14k 4+ —i (6.30)
n n

: 2cos*(B) sin(28)

X =1-k+ +i (6.31)

n n

Hence, the Fourier coefficients B, and Cy are conveniently given as the real
and the imaginary part of the right-hand side of equation (6.29), being
readily computable.

Finally, substituting equations (6.4), (6.12) and (6.27) in equation (6.6)

we obtain



"2 : - COSz n .
”?c(g)"‘ 2 [cos(ﬁ)] ek e—2ﬁ51n(26);‘nx
n
sin( 40) [sin(28 +10) mB 5 . -
sin(B+36) (cos(f+46) k§1 e P) 2cos(B) k§1 S ﬂ)}
1 ..
) ] (6.32)

246052(6)/11 {1_&_@1)-] B(X‘J )_()

as u— 0, with xy according to equation (6.13) and the Fourier coefficients as
given by equation (6.29).

Equation (6.32) gives the solution in closed—form of the fluid velocity
tangential at the unit circle in the (-plane, due to the rotation of the
impeller, for logarithmically bladed pump impellers as g —0. Summing the
individual contributions (6.2), (6.3), and (6.32) the overall velocity along
the unit circle in the (-plane is obtained. Then by transformation (4.8) we
obtain the fluid velocity in the physical plane; ie. for logarithmic spiral
blades

vy, ncos(f+1i0) 1

it : (6.33)
Vec R(O)r , |sin(10)]

as pu— 0, where R(f) is given by equation (3.15)

Next, substituting equations (6.2), (6.3), and (6.32) in equation (4.22) we
obtain that the blade circulation of logarithmically bladed pump impellers is
given by

nlyp ~ Op 21805 +Qtan(B) - T (6.34)

as pu—> 0, where the slip factor reads

e-zﬁsin(zﬁ}/n
Tpa2 ~ (6.35)

2 4c052(ﬁ)fn
(14228 [3c0s(5) B(x,X)

as g — 0; this slip factor will be further discussed in section 7.
Summing equations (4.20), (6.2), (6.3), and (6.32), and using equation
(6.34), we obtain the overall fluid velocity tangential at the unit circle in

the {-plane



QOsin(16) 2r?

~tcos (B o ooy,
vc(0) ~ - } [cos(ﬁ)] 3PS EI R gy
2mncos(B)cos(B+48) n
sin(10) (sin(28+1i6) n 00
Y Bysin(k0+2kB) - Y kCicsin(kf+2kB)
sin(B+40) |cos(B+16) k=1 2cos(B) x=1
(6.36)

as pu— 0. Note that in this equation the contribution of the vortex has
vanished completely. This, however, is not surprising since we are dealing
with pump impellers fitted with blades rising from the center.

Employing transformation (6.33), recalling that r=r(8)=r,R(8), and using the

auxiliary relations v}, = -, and vy, = +Us, equation (6.36) becomes

0 2r;
i [cos{ﬁ)

J —4(:032{'8)/:1
2nrcos(B) r

vsp(6) e’mﬁn(z‘@”ncotan(ﬁ-{- 30) X

sin(28+30) n 00
{— ) Bysin(k8+2kB) - Ekasin(k9+2kﬁ)} (6.37)
cos(f+416) x=1 2¢cos(B) k=1

as p—> 0, where vy, is the absolute fluid velocity tangential at the blades
of pump impellers, directed outwardly. The corresponding relative fluid
velocity w, follows readily from the transformation wg,=uvg,—2rsin(8). Hence

we obtain, employing a dimensionless notation,

s - cosz(ﬁ)/n .

R(&E—p ~ (6)—{R(6’)}2sin(ﬁ)— [cos(ﬁ}] ! & 2Bsn2B) 100 8 4 10) X
r, Cos
sin(28 +4i0) n 0
St e EBksin{k9+2kﬂ)- Ekasin(k9+2kﬂ) (6.38)
cos(B+16) k=1 2¢cos(f) k=1

as p— 0, in which @ is flow coefficient and R(f) is dimensionless radius, as
introduced before; note that equation (6.38) readily reduces to equation
(5.31) in case of straight radial blades (i.e. #=0).

Based on equation (6.38) we have plotted in figure 8 the relative fluid
velocity (wsp) due to rotation, that is, at zero throughput (i.e. $=0), for
several 8-bladed pump impellers. The graphs of this figure are appropriate for
both backwardly (i.e. £2<0) and forwardly (i.e. £2>0) curved blades. The figure



9

clearly shows that the displacement flow velocity diminishes as the blade

angle

increases. This, and other features, will be discussed further in

section 7.
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Figure 8. Displacement flow velocity along logarithmically
curved blades of 8-bladed impellers as y— 0.

(a) B=0; (b) B=15% (c) B=30% (d) B=45°% (e) B=60° (f) B=T5".
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6.2. Solutions from asymptotic expansion of Poisson eguation

In addition to the previous section, we shall discuss here the asymptotic
behaviour of the solution for the relative fluid velocity directly, that is,
by asymptotic expansion of the Poisson equation. In particular the behaviour
in a region located remotely, i.e. (1+2—”'5-::—S-(—@)rl‘g:r«(1—w}-)r2,
between the blade tips of logarithmically bladed impellers will be examined.
To that end we will consider the Laplacian of the stream function for the
relative flow. Unlike the absolute flow, this flow is stationary, and, hence,
it is easier to describe than the absolute flow, which is periodical.

Denoting the relative stream function by k, it is found that (see for

instance Kucharski 1918 p. 73 or Vavra 1960 p. 226)
Vik =202 (6.39)
Next, we introduce the transformation

&=cos(B)In [—E{-}—] +¢sin(B) (6.40)
?F=—ﬂM5VnG§J+@mdﬁ} (6.41)

in which ry is arbitrary scale factor. By this transformation, logarithmical
spiral blades are conveniently described by 1 =constant, following readily from
equations (2.2) and (6.41). In particular, we obtain from equations (6.40) and
(6.41) after substituting equation (2.2) that the jm—bla,de is described in

the (£,m)—plane by

&(r)= In [%J +D¢(4) (6.42)

cos(B)

and

=D, (j) (6.43)

in which D¢(j) and D,(j) are constant for a particular blade, viz.

11 T'o
Dg(j)={¢01+2ﬁ—+tan({3)1n{—]}sin(ﬁ) (6.44)

n o
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§~1 To
Dy(7) ={¢01+2:’r——-+tan(ﬁ);’n[—]} cos(p) (6.45)

With transformation (6.40) — (6.41), equation (6.39) becomes

3%k ézx .
Prea BrSateronlB)-aeint ) (6.46)

Then employing scale coordinates (£,,7,) €[0,1], e.g. defined by

£-£1
= (6.47)
€2-&1
- s
Ne= m (6.48)
where £ =£)(ry) and & =€(r,), yielding
5* [”2]
§=§+ In|— (6.49)
cos(B) T
2mcos(7F)
n=n'+——n, (6.50)
n

which readily results, using equations (6.42), (6.43), (6.44), and (6.45), we

may write equation (6.46) alternatively in a dimensionless form as

n 2 gﬂ_cosz(ﬁ) 232.&* azm* 62$1c05(,8)+2£*1n(r2/r1)
+ =2.Q*

2rcos(B) nin(ry/r,) 853 anf ezrpjsin(,ﬁ‘)+2frn*sin(2ﬁ)
(6.51)
where we have put additionally &= k,f2,r> and 2=0.0
Finally, incorporating
21!‘(?082( B) 2
— | ~0 (6.52)
nin(ry/ry)

as pu— 0, we get from equation (6.51), restoring physical dimensions,
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%k
—— ~ Orieécos(B)-2msin(B) (6.53)
31}2
as u—0.

The solution we obtain reads

.0 e Qrzezecos(ﬁ) ‘.
k(&) ~ K1+ — - +L_.2___ e-zﬂSin(ﬁ)_e-%sm(zﬂ)J 4
27 (cos(B) 2sin?(B)
2 2fcos(f) ) 4
an‘ze i n —st]; [e-¢asin(2,8)_e_¢g+1sin(23)] (6.54)
drsin”(B) cos(f)

as p—0, in which we have used the boundary conditions rc(g,r;j)=.¢cj and
m({,nj“) =rcj+l, with &3t - & =Q/n, and where we have put ry=r, for convenience,
so that Dg(j) =@lsin(8) and D,(j) = dcos(B).

Equation (6.54) gives the asymptotic behaviour of the stream function for
the relative flow between consecutive blades, viz. the blades j and j+1, of
logarithmically bladed impellers, in a region at a distance from the blade
tips, which is (much) larger than the distance between comnsecutive blades; in
fact (142722 B))r « r (1-2mc0s(B))y

Next, the tangential and normal fluid velocities w, and w, respectively,

defined by
Wy = wycos(B) +wysin(F) (6.55)
Wy, = —wsin(B) +wycos(F) (6.56)
where wr=%g—;- and wy= ~g—':, may be obtained from

10k
Wy=—— (6.57)

r an

19k
Wy=——— (6.58)

r 9f

which follows directly from transformation (6.40) — (6.41).
For convenience we will give the velocity distribution along an imaginary,
logarithmical spiral lying between consecutive impeller blades, say j and j+1,

being curved exactly like the impeller blades. Form equations (6.42), (6.43),
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(6.44), and (6.45) we find that a point on such a spiral may be characterized

by, again putting ro=r,, so that Dg(j) =¢¢j,sin(ﬁ) and D,(j) =¢gcos{ﬁ),

18 4 1 i -
For in[] +653sin() (6.59)

and
n% = ggcos(B) (6.60)
where j<a < j4+1.

The fluid velocities then become

wt(r,A) N .Qf' Sinh(t) e'\sin(zﬁ}-t’_l +_,___9_ (661)
sin(f) t 2nrcos(8)
2 . A ;
wy(rA) ~ — ﬂ {1- e"s'“(”’+n—sinh(c) e"s’“‘zﬁ)"} (6.62)
sin“(8) T

as p—0, in which /\=¢ﬁ‘—¢>g and t=mwsin(28)/n, and where we have used
$ -l =2m/n.

Finally, we derive from equations (6.61) and (6.62) the fluid velocities
along the blades. Taking successively ov=j (i.e. A=0) and ov=j+1 (i.e. A=27/n)

we find for the upper blade surfaces, employing a dimensionless notation,

w} @ R sinh(t)
~ - et-1 (6.63)
2r, Rceos(B) sin(B) ¢
wy
w0 (6.64)
0r,
and for the lower blade surfaces
wy ¢ R sinh(t)
—_—~ + e'—] (6.65)
2ry  Recos(B) sin(B) t
Wy
—~0 (6.66)
Or,

as u — 0, where R=r/r,.
Note, in particular, that for r<«r, (i.e. R« 1) solutions (6.63) and

(6.65) perfectly agree with solution (6.38), which was illustrated in
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figure 8. Furthermore, it is seen that the normal velocities (w,) comply
properly with the boundary conditions.

From equations (6.63) and (6.65) we further obtain, restoring physical

dimensions
) 2n2reos(B)
wy ~ = (6.67)
2nrcos(B) n
~ Q 2r2rcos(B)
wy ~ i (6.68)
2nrcos(B) n

as n—o00 (i.e. t —0).

Equations (6.67) and (6.68) clearly indicate that a negative velocity
contribution is to be expected along the (pressure side of the) blades due to
the revolution of the impeller. This is commonly interpreted as being the
result of a relative eddy located between consecutive blades, which,
basically, originates from the irrotationality of the absolute flow.
Consequently, the relative flow possesses a constant vorticity equal to -2

(i.e. Vxw= —212).



