Appendices to accompany the paper “On the stability of vertical double-diffusive
interfaces. Part 2: Two parallel interfaces” by I. A. Eltayeb and D. E. Loper which is to
appear in the Journal of Fluid Mechanics.

Appendix A: Solution details for the thin plume

This appendix contains an outline of the calculations necessary to find the functions

.QIB (m, n; xg, 6) and QZB (m, n; xo, o) for the thin plume, i.e. for xg << 1, using (4.3) -
(4.6).
A.I The zeroth-order problem

The governing equations are (3.11) and (3.13) — (3.15) with terms involving either R or £
eliminated. These equations are to be solved subject to the decay conditions (3.17a) and
continuity conditions (4.1) or (4.2). This problem is virtually identical to the zeroth-order
problem solved in Appendix B of Part 1; the solutions for the varicose and sinuous modes
may be expressed as:

3
B
ug, vg, wg,pg, Tg} =}§,1 {—nlj, —mn, ,ujs, s ujz} 24; A exp(—ljx*), A1)

where A;, 1, and A; are given by (2.19) - (2.21),

and x* = x—xp. (A3)

It follows from (4.10) that all of the zeroth-order variables are real.
Now we may use (4.3) and (4.5) to find £2; for the two modes. The results are
presented in eqs. (4.7) — (4.9).

A2 Formulation of first-order problem

At this order, it is sufficient to consider the solution of the set of four variables vy, wy, p1,

T, since expressions (4.4) and (4.6) for Qf do not contain u;. The governing equations

for both varicose and sinuous modes are, from (3.12) — (3.15):

(@/ax2-a?)p} - 17 = F, A4
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(a%dx2—a2)w? + TP + n2pP = FP

1 w? (AS)

(@%ax2 - a2)Tf - P = FE, (A6)

(dgld;nrz—:fzz)vlB = —mnplﬁ +(-Q]B +inW)VBa (A7)

where FP = —2iuf}(dw/dx), (A8)

Fl = [QF +inw|wl+ iuf(aw/ax), (A9)

and Ff = of & +inw|T§ + ioub(aT/ax), (A 10)

for B =v, s. Equations (A 4) — (A 7) are to be solved subject to the decay conditions
(3.17a) and continuity conditions (4.1) and (4.2).
Since the basic-state and zeroth-order variables are real while 2, is imaginary, the

forcing terms F’ E are imaginary. The auxiliary conditions (3.17a) , (4.1) and (4.2) are

homogeneous at this order. It follows that the first-order variables are imaginary and £2,,

as given by (4.4) or (4.6), is real. Thus stability should be determined at this order.
With xp << 1, expressions (3.6) for W and T, correct to dominant order in Xp, are

W = x(]hn[k Cxp(—kx *H’
(A1)

T =— xoIm|ik exp(-kx*)].
Using (A 1), (A 11) and (4.7), the forcing functions defined by (A 8) — (A 10) may be

expressed as

~B3 3
FP = _21nx0{g1 zl A; AP Tyexp(-Ax*) - Im| & _21 A;Ajﬁéyexp(—é}x*)ﬂ, (A 12)
J= I=

where the coefficients AJ,-B are given by (A 2),

Te = I, I =0, It = oy, (A13)
By = 4 +kljs By = -2k, D = ofuP-ikA), (A 14)
and G = A+k. (A15)
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The set of functions wy, py, T is uncoupled from vy, so that they may be found
first without consideration of the latter variable. This is donein §§ A.3 - A.5. Once this is

accomplished, the solution for v; is found in § A.6. Finally an expression for .QZB is
obtained in § A.7.

A3 Homogeneous solution for w,, p, and T,

The solutions of (A 4) - (A 6) satisfying the decay condition (3.17a) may found
using the procedure of Appendix B of Part 1, and may be expressed as the sum of a
homogeneous (subscript h) and a particular (subscript p) part:

yp =yl +y8, (A 16)

fory=w,p, T and B =v, s. Itis easily verified by substitution into the homogeneous
version of (A 4) — (A 6) that

B
A:
{ wh,ph, } = meoz {,uj o £ Z}foBGXP(‘ij*)- (A 17)
j
The coefficients B jﬁ, which are equivalent to coefficients B; introduced by (1.B 11), are to

be determined by conditions (4.1) or (4.2) once the particular solution has been found.
A4 Particular solution for wy, p, and T,

The particular solution of (A 4) — (A 6) may be expressed as

. Bl o
ypB = 21nxD Ql .zl Aj Ajﬁ[};a}x 5k )’a;] CXP(—ij*)
}:

3 B (A 18)
+ 2inxoIm|k Y AjA; ybjexp(—é}x*] .
j=1

fory =w, p, T, where .QlB, AjB, A; are given by (4.8) or (4.9), (A 2) and (2.19),
respectively. The coefficients y,;, Vaj» and yy; are to be found. The form of (A 18) has

been chosen so that these unknown coefficients are the same for both varicose and sinuous
modes; consequently these variables lack the superscript f3. The term in (A 18) containing
the variable ¥aj is functionally identical to the homogeneous solution. Thus one variable (6%

=w, p, T) may be set to zero arbitrarily. We choose
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Py = 0. (A 19)
Substitution of (A 18) into (A 4) — (A 6) and making use of (A 12) — (A 14) yields the
following algebraic equations:

HjDaj— Taj = Hjwyi + Taj + ”Zpaj = #jTaj — Wy = 0, (A20)
lepaj o faj =0,
2AjWaj — LW — ~qi = #;'3, "
1)
ZZjTaj— #jfaj + Waj = O'#jz,
YiPvj ‘Tbj = —Zk;l,j,
i Z'T’=(3k?b-)
YiWhoj + n-pyj + 1'p; i +KAj),
) (A22)
— Whj + xfTbj = O'(HJ, —ikkj),
where Y= Cjz—az = (J.j+k}2—a2. (A 23)
Note that (A 20) is identical to the first of (1.B 6) and (A 22) is identical to (1.B 18).
The solutions of (A 20) and (A 21) are
{waj’ paj, Tﬂ_]l e ‘_(1 + G)A]{uj’ Ilf’ }‘l_-?}’
. pin?o-2n2-2y) 7 _ (L+ou | (A24)
Wa; = =
e 3n? -+ 2 & 3642y
while the solution of (A 22) is
Wpj = DLJ[ n2y2kA; + #(uﬁ + k)~ (5 + RZ)O{H}-Z—-ik)»j}],
Pvj = bl-.Hl + kA () + i)+ ol ik,
! (A 25)
g e 3 2 -
Tyjj = ﬁj[ n22k A+ (17 + k) + volu?-ikA;)), J
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where D; = }§3+15-+n2. (A 26)
If we label the roots y; of (2.21) such that ; is real while y; and 3 are complex

conjugates, it follows from (2.19) and (2.20) that the solutions given in (A 24) have the
same complex behavior: y,; and ¥, are real while the pairs y,2, ya3 and 5,5, Va3 are

complex conjugates. The complex character of the coefficients given by (A 25) is not

simple.
A5 Satisfaction of boundary conditions for w;, p; and T,
At order R and to dominant order in xy, conditions (4.1) on the varicose mode are
At x =x: dw{/dx = dp{/dx = dT}/dx = 0. (A 27)

Using (A 2a) and (A 16) — (A 18), conditions (A 27) are satisfied provided the coefficients
B; satisfy

3 ~
Zj_ {ﬂ?: Ju]) #JZ}B; = {;Dv’ ﬁv, Tv}, (A 28)
}:
where
v 3 3
2 Z Ajlyy — 27,)~Im k_Zl CiAjyuj |5 (A29)
= j=

fory =w, p, T. Note that y" isreal. The solution of (A 28) is

[- " + n2p* - p27"] :

(A 30)
1i{(3n2 +2p))

v—
B =

This may be verified with the aid of (1.B 29). Compare (A 30) with (1.B 30).
At order R and to dominant order in x¢, conditions (4.2) on the sinuous mode are

Atx=xo: wi =pi =T = 0. (A 31)

Using (A 2b) and (A 16) — (A 18), conditions (A 31) are satisfied provided the coefficients
B; satisfy

Z {8, w12} B; = {5 T), (A32)

where

& 3 5 3
Jj= J=1
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for y=w, p, T. Note that y*is real. The solution of (A 32) is

B! = _[_yﬁs_'_:ﬁs_%_z ]
130+ 241)

(A34)

This may be verified with the aid of (1.B 29). Again, compare this with (1.B 30).
A.6 The first-order problem - solution for v;

P, subject to conditions (3.17a), (4.1d) and

(4.2d). Using (4.7), (A 1), (A 11a) and (A 16) - (A 19), this equation may be expressed
as

We now wish to solve (A 7) for v

3
vg = 2imn2xy Y,
j=1

QAf1 —pajx*) - %B}P Ajﬁ exp (w- Ajx *)
j

- (A 35)
- 2imn2x lm[k p 24 AjAjﬁ(pbj +1)exp(—§jx*)}.
i=1

The solution of this equation which decays as x — o is
p

3 A
vP = iaBEcxp(—ax*)—Zimnzxo > —"—ijexp(—ljx*)

: I i
J-1lj

3 3
+ 2inxg{.(21 2, Ay Ajﬂ(vaj;x* - 'i!"aj]cxp(—ﬂ,jx*] + Im[k > A jAijbjexp[—{jx*)J} (A 36)
j=1

Vaj = —mn—=, Vi = - bj = —mn——=.
3 m VS m j {.}2 2 (A 37)

The jump condition on the varicose mode (4.1d) is satisfied provided

O _mn1_2ljpzy], o b+ 1)

B} = %[n?vwm(ﬁr"-b )] (A 38)

where ¥ is given by (A 29). This may be verified with the aid of (1.B 29).
The jump condition on the sinuous mode (4.2d) is satisfied provided
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B = ——[nv —mlw+ 7). (A 39)

A.7 Expressions for growth rate

Now we may use (A 16) - (A 18) and (A 36) to write (4.4) as

Q =12 (A 40)
where
3
-Qz = 2 E
~y 3 3
+2n8 2 Aj(mir“aj + nﬁ‘aj} +2nIm| k E Aj(mvbj & 2 nwbj) : (A 41)
j=1 j=1
The quantity J is defined by
J=FRv—(w+p). (A42)
We have also used the fact that
2
W-m2= 4. (A43)

Combining (A 30) and (A 43) we may write

3
z fljB}'r =-5
j=1
where s is defined by

s = Myw—n?Mp + M,T . (A 44)

and My is given by (1.4.32).
Using (A 29) with y =J we may write

~y o~y 3 y 3
Q= 21 AjQp + Im[fc Zl A } (A 45)
= =
where
—~ — 2 T v
O = 20m¥y+ niWy) + 221y~ A7) + 20253~ A5) (A 46)
and

QIV = 2n{mvbj + nij)— 2n2 gjsbj"' 2%1" g."fb.? : (A47)
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The following equations, obtained from combinations of (2.21) and (A 20) - (A
22), are of use in evaluating the coefficients Jyj, J,; and Ji.

2
Waj — I Daj = 0, (A 48)
22(waj + poj) - 1iWay = 112, (A 49)
%woj + poj) + n2py; = pd — k. (A 50)

Using these and the definition (A 42), we obtain
T =0, Jy=-1, Jy= 1-%9- (A51)
Noting that ;

2 Aol =0 (A 52)

we see that the terms involving J in (A 46) do not contribute to €2, and may be ignored;
now

op = 2n(mVy + niwy;) + 2n2( Saj— 1j§aj) g (A 53)
and
2
O = 2n(mvy; + nwy))— 202 Cispi— 2m—§-[1 ~L§] .
j j Sbj= < g5 % (A 54)
Further using (A 37), (A 43), (A 49) and (A 52) we have that
G ﬂ,jz 2a2); ~
O = 2nY—=——Lpy + 55— A5, (A 55)
H; i
and
7l = _gnzgj{@:‘y@ﬁ " sbj)+2_a§m£_ (A 56)
i {]

Note that the first term on the ri ght hand side of (A 55), when summed will yield a term
proportional to M>.

One of the two desired relations .Qf (m, n; xo, 0) is given by (A 40) combined with
(A 45), (A 55) and (A 56). Note that it is linear in o and second order in xg.
Consider now the sinuous mode. We may write (4.6) as

11/17/93 8 Eltayeb & Loper, Part 2



in dGi i inxo .
& =-— WL -—2(Qf+75')” Xo). (A57)

a =x, a

where G is defined by

We have from (A 1), (A 2b) and (1.4.32) that
. 2
ME(IO) = — ZH.XOEI j‘,’ AJ = - HX[)M3 . (A 59)
J':
Also (4.7) and (4.9) may be combined to yield

inxg .
q-kﬁ =—1nx0M3. (A60)

Combining (A 16) - (A 18) and (A 36) we obtain
* 3 *
G = — 2ix% m*J exp(—ax ) + a2n2§ chxp(—lf-x )}
J:

3
+2in*xg (8 Zl, AA j(Gajx*-kéaj) cxp(—ijx*) +2inx3Im
J:

3
X jGrjexp(~ (;x)] (A 61)
=

Defining

= 27
% = %%, (A 62)

we may use (A 57), and (A 59) - (A 61) to write

2 2 3
q = ?MS—T_F-F:ZR Z B-',./‘i:’f

J=1
2 3 2 3
+ Ziz Y KA(Gy-AGy) - zizlm kY, LAGy gj}, (A 63)
a a j=1
Combining (A 34) and (A 44) we have that

: 25
E ljBf S

J=1

Using this and (A 33) we may write
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2 3 3
- n s
!225 = ?Mg - qz{ ﬂ.jAij) + [m[kz; ;»?AJQ?J (A 64)
= J=
where
S—Z”ZG A6+ 2T 225
Qq = ?2'( aAGy) + T Ty 20y (A 65)
and
& 2n2 2m2 2
QI :—-gz—é}ij'l'TJ]:y"{'Zﬂ Sbj‘ (A66)

As in the varicose case, the term involving faj does not contribute to .sz and may be
ignored. Using (A 37) and (A 48) - (A 50) we have that

» ~  (yi+a2) 2422
Gaj = _a__paj; Gaj =+ e Jpaj,
Hi Hj ujz
(A + a?pyy) (A 67)
Gy = ——=2——1
Yi
With this result and (A 52) we may rewrite (A 65) and (A 66) as
‘ (+22°)  Au+dd) .
Oqg = 2n 5 Do~ 3 + 8y
% a (A 68)
and
Y &g 2km*
s _ Lo d ¢ W o
O = 2n{a2 * % + .J?pbf”bj) ay, é:' (A 69)

(he second of the relations for QQB (m, n; xo, 0) is given by (A 62) combined with (A 64),
(A 68) and (A 69). It too is linear in o and second order in X0.

Appendix B: Solution details for the plume of arbitrary width

In this appendix we shall outline the solution of (3.1 1) — (3.15) subject to
conditions (3.17), expanded in powers of R as in (3.19). The analysis parallels that of
Appendix A except that here we must solve the equations in two regions, lxl < xp and xg <
Ixl, rather than one.
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B.1  Zeroth-order problem

At this order, the governing equations are (3.11) — (3.15) with terms involving R or Q
neglected. The dominant-order varicose (B = v) and sinuous (B = s) modes satisfying

conditions (3.17) may be expressed as follows.

For 0 <x <xp:

3
B
VB 0’ pos TB} ; {—mn, #13, p:_,l's ﬂjz}ZA]A} ij(x]: B 1)
3 B B
ug = Zn‘zl AjAj ;LjRj (x), (BZ)
j:
forxp<x:
3
p
vg, wOB, pg, Tg} =3 {ﬁmn, 1, 1, _uj"}ZAjAj exp(—).,jx*], (B 3)

1

]

J

3
ug =_2n _ZI AjAjBlj exp(—ljx*), B 4)
1=

where 4;, 4;, H;, and x* are defined by (2.19), (2.20), (2.21) and (A 3) respectively,

. i 9

A %+ %exp(—Z/'ijo), Aj = 53— 5exp(-24x), (B5)
cosh(l-x) Sy _ sinh(4;x)

0} (x) = — 2, i) = ST B6)

) (x) cosh( 3410) sinh(4;x,) (

sinh(2,x) _ cosh{Ax)

RY = ———J——, R; (x) - B7
and j () =y 2x0) J smh{ljxg] (B7)

The coefficients defined by (B 5) reduce to those defined by (A 2) as xg — 0, while in the

limit x - oo* , A

— 1/2 and solutions (B 3) and (B 4) tend toward those of the single
planc interface; see (1.4.18). Continuity of uB atx = xo is verified by noting that

Z AjAj = 0and ABR B( of = 1= AjB. Note that these solutions have the same complex

More precisely we need (m2+r6 )xg >> 1 to approach the indicated limit.
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character as those for the single plume; ug, vo, wo, Do, and T are real for both varicose
and sinuous modes.

{2, may be determined from (3.21), with W given by (3.5). Noting that
3 v
AjAj = 0 we obtain expressions (5.1) - (5.3) for £y and 2.
=1

!

B.2  First-order problem - formulation

The equations of the first-order problem are

(d%/dx2—a2)pP - 1P = FB,

(B 8)

(%/dx2 - a2w? + TP + n2pP = FB, (B9)
(%/dx2 - a?)7f - WP = FE, @ 10)
(dz/dea?)vIB = —mnpf+(91ﬁ+inw)vﬁ’ (B 11)
duf’/dx = —mvf—nwlﬂ'. B 12)

with the forcing functions given by (A 8) — (A 10) and W and T by (3.5) and (3.6). These
equations are to be solved, for both the varicose (B = v) and sinuous (B = s) modes,
separately in 0 <x < xg and xg < x, subject to conditions (3.17a), (3.17b), (3.17H) or
(3.17g)and the homogeneous versions of (3.17¢) and (3.17d):

(dwbrdx

Jemse = (awfia)

x=x4t’

(B 13)

(dpfidx), _ v = (dpPiax)

x=xg+

Since w, T, ug and Tg are real and QIB is imaginary, the forcing terms are
imaginary. It follows from this, and the fact that the boundary conditions are
homogeneous to this order, that the first-order variables are imaginary.

Using (3.5), (3.6) and (B 1) — (B 4), the forcing functions (A 8) — (A 10) may be
expressed as follows:
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For 0 <x <xq:
8= 2in0' S 4 4P 0B) i SA[ZE"D )+ (4P - ), 0° ]
Y =—2in ljglAjj yQJ,-(Jt)—-U*:Im §,1 il 4 v O (x)+ i = yQ_(x) - (B 14)
for xp < x:
B et B * . g B *
Fy = -2in '21 AjA; Fyexp(_ﬂ,jx )+ 2inIm KZI AjA; beexp(—fjx ) > (B 15)
j= j=

where .QlB Ty, @,, & and A} are given by (5.2) & (5.3), (A 13), (A 14), (A 15) and (B
5),

Yo = 15—k, W= 2kA, ¥r=o(f+ikd) B 16)
11
z =2+ Zexpl-24x0), 5 = 5~ 7o0(-24x). ®18)
- K = exp(—kxo)sinh(k xo) = %—%exp(—%xo). (B 19)

Note that (B 15) reduces to (A 12) asxg — 0, and (B 14) and (B 15) agree with (1.B 14)
- (1.B 16) as xg — <. Using and the continuity properties of the basic-state and zeroth-
order solutions, it may be deduced from the definitions (A 8) - (A 10) that F. SI? must be

continuous at x = xg. Making use of the identity 2K AJ,-B = AJ,-B +K— ZjB it may be shown

that the two versions of FE given by (B 145) and (B 15) are in fact continuous at x = X0

B.3  First-order problem - homogeneous solution

As in Appendix A the general solutions of equations (B 8) — (B 12) may be
expressed as the sum of homogeneous and particular solutions; see (A 16). The
homogeneous solutions satisfying the symmetry and decay conditions are:

For 0 <x <xq:

WP, pb.rf) - iil (48, i, )P 0P (), (B 20)
4=
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—~ 3 ~
vll? = iaCanB(x%imnj;1 CjBQJp(x),

(B 21)
B_ . =Bpop .3 B P
Uy = —imC4R(x)+inY, C; AR} (x).
j=1
For xog < x:
3
{WE b TP = i (13, 1y, w2 )CPexpl-2;x7), B 22)
j=

3
{uf, vhﬁ} =i{m, a}CE exp(-ax*) + i}é‘,} (—n/l-, —mn}Cfexp(—ij*), (B23)

where the functions QjB and Rf' are defined by (B 6) and (B 7),

h s,y _ sinh(ax) ‘
Qi) = %}&%’ Qalx) = sinh(ax)’ (B 24)
' s;.y _ cosh(ax)
i RI) = e S e 29

The coefficients C}-B, 5j|3 : CE, and 53 are to be determined by satisfying conditions (3.17b)
and (B 13), once the particular solutions are found. Note that (B 22) is identical to (1.B
11) with the upper sign.

B.4  First-order problem - particular solution

The particular solutions of equations (B 8) — (B 10) may be expressed as follows.
For 0 < x < xyp:

B = _2i .aﬂiA'AB['Rﬁ 72, O }
Yp = —<ln 1_1 j 4 [YajX j(x)—yanj(x)
J':

B (B 26)

—in Im{é,1 A; [ZjﬁyijE(x) + (Aj - K))’cj 0P(x )J}

For xg < x:
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y};ﬁ = 2ing j:z,l Aj Ajﬁ[yajx* + j‘;’aj] exp(-ﬂ,jx t)

3 B 27)

+ 2in Im{K > A jAjBybjexp(—é}x*)}
j=1

where y =w, p, or T, and x* and j are defined by (A 3) and (A 15). The forms of (B 26)
and (B 27) have been chosen so that the coefficients with subscripts a, b, and ¢ are the
same for both varicose and sinuous modes; thus these variables lack the superscript . (B
27) may be compared with (A 18) in the limit xy — 0 and with (1.B 17) in the limit x
— oo,

The terms in (B 26) and (B 27) containing the variable ¥aj are functionally identical
to the homogeneous solutions. Thus one of each of these variables (fory=w,p,orT)
may be set to zero arbitrarily. We choose

Paj = 0. (B 28)
The remaining variables with subscript a must satisfy

HiPaj=Taj = iwaj+Taj+ n2psj = piTaj— wyj = 0, (B 29)
and
2ipsyj +Tj = 0,
Zﬂ.jwaj —ujﬁiaj - '.‘Faj = uj?’s

N (B 30)
ZAjTaj = ﬂjTaj + Waj = cmf .

The solutions of (B 29) and (B 30) are:
{wajs Paj» Taj} = = (1 * O-)Aj{ﬂ_;t’ #}_2, Hjs},

i::a J

(1+ O')uj' - )ujz(nzc— 2n2 - 241;) (B 31)
= 2 w | = ?
3n2 +24; ¥ 3nd+ 24 {

The variables with subscript b satisfy

—2kAj,
ujB +k4;,

YiPvj — T

jj‘ Whj + nzpbj + Tbj

(B 32)
—wy  +yTy = o[uP-ikA),
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while those with subscript ¢ satisfy

Vipej —T¢j = 2klj, l
y{,-wcj + nzpcj + ch = }i? - kﬂg,

: (B 33)
- Wgj + %'ch = O'J:yjz+1k).j],
where

%= @A+02-a? and y; = (4-k)?2-a2 (B 34)

Note that (B 32) is identical to both (1.B 18) and (A 22) and that (B 33) follows from (B
32) by changing the sign of each term containing k. The solutions of (B 32) and (B 33)

W = 1%[ n2y;2kA; + (i + kA;) - (3 + n2) o{u? - ikAs),

py = o l-(leofley +( vmy)e o),

(B 35)
Tbj = _DLJ{ n22k/1] + T( + klj) J}’Zo(#jz i iklf]]’
Wej = ELJ[ —n2y;2kA; + %2(»“;3 - Mj)—(\"j +n2) 0'{‘”12 + ikafﬂ’
PG =3 (14 wf)or; o+ (i} — aay)+ viofu? +ika;]]
J (B 36)
Toy = ELJ [ —-n22kA; + wj(pj3~ k/lj)+ %20{#;2 +i“jn=
where
Dj=7j3+??"‘"2 and Ej=u/f+%+ﬂ2- (B 37)
Now equation (B 11) for vg’ may be expressed as follows.
For 0 <x <xp:
L-app= 2ime a3, 4 ko) ofec
5 (B 38)

Fimnd Im{ZAJ,[ B(pbj+1)QE(x) [A K}(pc,u) P )}}

j=1
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For xp < x:

(Lz__az) = 21mn2.Q] Z A A (Pa_;x - lJexP(_ jX )

(B 39)
- 2imn21m{1( Y A;A oy +1]exp(—§jx*)}.
i=1

Compare (B 39) with (1.B 21) with the upper sign, in the limit xg — . The solutions of
(B 38) and (B 39) may be expressed as (B 26) and (B 27) with

: 2}»,
vaj = —mn@", vaj =_‘mn[1"‘_ pajjl
H BL o4 (B 40)
_ (pvj + 1) L ¢+ 1) )
vbj = —mn ) ij =t e ——y
b/ Vi

The particular solution of (B 12) may be expressed as follows.

For 0 < x < xy:
B3 B
i = 20015, 4y uge 00)- R0

3 (B 412)
i Im{'z {ub,z RB(x)+ uc;{Af_K)R?(x)]}

For xp < x:

ug = 2in & E AjAjB[uajx* + ‘u‘aj]exp(—ifx*)
f (B 42)
+2in IleZ AjA ﬁubjexp( Q}x*]}
fmi

where

SomilEhx |
o]’ B 43)

. f k]x] s cosh[(4;

k| i) = smh[(ﬁ

S
+ik

MmVp; + AWy
Ly = T W)

- mVai + nWy;) (mva + nw.;
u'=( = a")-i-( = = a"), Uej =

(mve + nwej) . (B44)
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B.5  First-order problem - boundary conditions

Continuity conditions (3.17b) and (B 13) are satisfied provided the homogeneous
parts of the solutions satisfy the following nonhomogeneous equations:

yf(xw)—yf(m—) = 2i5P (B 45)
fory=u,v,w,p,and T, and

dy? dyP

D (r00)- Do) = 235 ®46)

for y=v, w, p and T, where
5% = L[yBxo*) - yBlxo-) 555

(B 48)

B
5P = L[dyp L T
V7= g o) - b))

Note that each of these hatted and double-hatted variables is real. Using (B 5), (B 7). (B
17), (B 26), (B 27), (B 31), (B 35), (B 41), (B 42) and (B 44), and noting that

B p B

APRP(x0) = 1- A% and 2K AP = AP + K ~ 2P, these variables may be expressed as

S il él aif1- i )yaj- %Im{jé Aj[(Af + K)ybj § {'Af - K)ycj]} (B 49)

fory=v,w,pand T;

B = nol 3 aion’ B+ 21! 3 4 g B 50
P = n ‘21 Aj|X0A; Ugj — Ty +51m '21 A\l =K — Aj |[up; + ugj]y (B 350)
j= =

and
G R

Y =n ¥ A [ AiFaj — (1'*"111‘0/1 ]YaJ]
i=1

3 (B 51)
‘%‘m{Z: AJ(1~K A )(l +k Yo + [l; )yc}}}

fory=v,w,pand T.
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Equations (B 45) and (B 46) yield nine conditions for the eight unknowns C¥, &¥,

CE , and ﬁf . The condition on the derivative of p is an ‘extra’ one which has been derived
from the remaining conditions in § 3. It follows that only eight of the conditions are
independent, and the system is not overdetermined. In analogy with (1.B 25) — (1.B 28),
and using (B 20) — (B 23), these may be expressed as

tonil-at) sl e
P
3 ~ A ~B 2B A
-2 s 1712, C;'B’*(l A?) 7| 2{‘7’ 5.7, (B 53)
j
dct- ) smn3 &P - cP) - 298, (B 54)
=1
[ B
—a2 Cf+‘~1—'r—""B)5fJ+mn%, Aj CJ,!3+[1_A"')EL"}-B = 25",
Ff j=1 i Ajﬁ (B 55)
B _AP
"{ CE+(1;?)6‘F}”§1 & C’h(l A/;]}Cfﬁ 2 g
; |

J

Making use of (1.B 29) and the fact that

-~ ~~
~~ -~

nw " +np +m5 Py a2gB = 0,

it may be verified that the solutions of (B 52) — (B 56) are:

&:P = 2FaB(HE—Bf), 61'& = 2Aj5(H]§—Bf),

cf = 2rf(uf-Bf)+ 288, P = 24M(uP 5%} 25| @

where
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HE = ln—-(ﬁ)B-l-ﬁB}__—l.'ﬁﬂ, HB = gﬁl#ﬁ[‘,ﬂ_nZﬁ +)u_}2T ],.
an a? / w

" B an2b_ 278 | B8
BE:EE_EL(;‘;BJ@B), sz_[ uw® +n2p ,uJTL (B 58)

. . w{(3n2 + 241)) |

and
1 1 1 1

Ii= 3+399(2ax),  IT= 5-5exp(-2ax). ® 59)

It remains to develop an expression for .Qzﬁ , using (3.17e), (3.19), (3.22), (A 16),
(B 23) and (B 42) evaluated at x* = 0:

Qf = —2m[Ff(HE— BE] + Bﬂ"'znil Aj{(Ajﬁ_ 1)(H;§_BJ[3J +BJI'3]
=

~B 3 3
-2n Y Aj Ajﬁ'ﬂaj—z.n Im{K > AjAjBubj} (B 60)
j=1 j=1
Here m and n are prescribed wavenumbers in the horizontal and vertical directions
respectively, A; and A; are given by (2.19) - (2.20), .QIB is given by (5.1) - (5.3), A_,-[3 is
given by (B 5), BY, HY, BY and HP are given by (B 57) - (B 58), with the hatted and
double hatted variables given by (B 49) - (B 51) and the variables with subscripts a though

¢ given by (B 31) - (B 33), (B 35), (B 36), (B 40) and (B 44).

There are two limit checks that can be made on this solution. First, as xg = oo,

3
P - - %htgl A j}’bj} for y =v, w, p, T, which equals § as defined by (1.B 28).

B

R . ~B
Also,#® » 0, §° 5 0 fory=v,w,T, O —0, A -1, Poip, k-

B p B B S B 13 l
172, H; -0, HY —0, and =-2mB;+2n), A;BY - nIm > A; up;} which
4 J 4 = | -l J J[
J: —

agrees with (1.B 27). The second check is as xp — 0. It is shown in appendix C that in

this limit, solution (B 60) for .QE reduces to the thin-plume expressions (A 40) and (A 62).
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Appendix C: Reconciliation of the general and thin plume solutions

The purpose of this appendix is to show that in the limit xg — 0 the growth rate for
the general case is equal to the thin-plume solution.

C 1. Reconciliation of £

Consider first the neutral growth rate .QlIi - We need to show in the limit xy — 0 that
(5.1) reduces to (4.7). Using the notation of (4.7) we may write (5.1) as

- 3
.QIB = _%Bsin[ﬁ xo)exp(-V2xo) +P Y, 2;A jexp(— Zijg)}, C1n
=1

where P = +1 for the varicose (even) mode (i.e. for B =v)and P = -1 for the sinuous
(odd) mode (i.e. for B =s). As xg— 0 this reduces to

=B

3
O = = -2PY A (C2)

sl
V2 j=1
which is equivalent to (4.8) and (4.9).

C 2. Reconciliation of £

Next we need to show that (B 60) in the limit xo — 0 reduces to the expressions
given by (A 45), (A 55) and (A 56) in the case B=v (P=1)andto (A 64), (A 68) and (A
69) in the case B=s (P =—-1). Using (B 58) and noting that

B ~B
Q =x0, 1E5)
(B 60) may be written as
~ B B~ B ~ff 3
B 2 AB 2 — ~
o =2 _2miy 3P 2m (1 ra)fﬁ_;,lgfz A;Afiza,
x(% a2nxg anx& 0 j=1
C4
seulekadtol st
X0 Xgi=

where the parameter grouping J is defined by (A 42). The difficulty in reconciling the
general and thin plume solutions stems from the apparently singular behavior of QZB as xg

— 0. In the remainder of this appendix we shall develop a systematic representation of .QZB
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which is well behaved in this limit, and which agrees with the corrresponding expressions
found in appendix A.
The first step in this process is to rewrite the last term in (C 4) involving the

summation of Bf and H jp. Using the Taylor series expansion of A jﬁ for small xp we may

write

- Pxo; + PxgA” + 0(x3) . (C5)

3 3 3
2 { B8 oB BJ _n(+P) S, 8 n(1-P)3 g
;{?E’l Ajl A (Hj Bj]+B}. = E‘l AHT + > > A;B;

=1%}

Xy j=1

P 22(yB_pb 3 .3(p B C6)
‘%%El A (Hj ‘Bf}”"f’gl Aj (Hj —B,-]+0(xo)-

We may use (1.4.32), (1.B 29), (4.10) and (B 58) to evaluate the sums appearing
in (C 6):

2 & 2B R & %
s (B3t (5050 g0 a8

3
LHB = 3 | - =G _mi (7
E’I 7 E‘l 1{3n2 + 2;) n? a2  aln?
” 2 2B
3 3 1.[ SB_ 258 ZT} A
NP HE:| S s L= ki it LIS S (C8)
j=1 j=1 1{3n2 + 241;)
S o 2P
3 3 [ =SB 258 ZT}
> A EE = Y paatt — TP Y
=1 -~ 1/3n2 + 211;)
= P 5 Co
_@BPemBY a8 sp 03 o
= = =G,
3 3 Al By 258, 27B
s AjBJP _ A,[ wiwP+n2p uf’r] _ 36, € 10)
j=1 j=1 ;11(3.?12 + 2,uj]
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~B
3 .28 3 3B 3 3{_%,1,8.,,"2;,3 #.2]"‘]
AiB; = m?2— 1’ |BY = m? !
E& ik Eﬁ( #,) ! E';( uj) 1 (3n2 + 21:)
(C11)
2B 4 ;258 -
n2 n
3 /'L-;twﬁ+n2pﬁ'—‘u%ﬁ
S A B = 3 (mr g A F 77")
j=1 j=1 #1(3” +2#j) (C12)

== m2§|3 + M4VT«'&-— n2M3§B + M5?B

where J, s and G are defined by (A 42), (A 44) and (A 58), respectively. We will find the
subsequent experssions are more compact if the versions involving G and J are used.
Using (C7) — (C 12), (C 4) may be expressed as

2 = m2lorf_1p)" M(l r¥_apxy)7*- "(12”) B n(1+:")§B

a?nxt anx¢ x4 a?x

» o ~3 3
——%‘?(Gﬁ—ﬁﬁﬁs) ZHQBZ AiA; ua}—z——Im{KZ AABub,}

X{) j=1 (C 13)

+ 2nP(G P —p B—m—zsz + 2nP(M4v’D P_n2pm,pb +M5'r5) —2m2nP 5P + O(xy).
n

The next step in the reconciliation process is to divide all the hatted and double
hatted variables into two parts. We start by writing (B 49) as

5% = —nxd .Ql Z Aj (1 Aﬁ)yaj ——ImLZ A; "BIJ (C14)

fory= v, w,p, G, J, and s with

~PBI
y}B = [AJ'B-"K))’b}' +(AjB"K}}’cj- (C15)
Similarly (B 51) may be expressed as

~B 3 21
Yy = nxp -Ql Z A (l_}yaj —Yaj— x{})-A }’aj] B3 IH{E j(Ajﬁ"'K_ 1)}’]‘] C16)

where
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5i = (+k)ye + (4-k)yg. (C17)

Note that j;"}l is independent of J.

~B
Now, we may similarly divide £2,, and write (C 13) as

~B  ~B3 3
£, = .Zl Aj ijn + In][.zl Aj Q.PIJ (C18)
J= =
where
2 2
0P = M(ajcaj-c;aj) (zr"—u’)z 2"Aﬁ’:2'a,-
7 a’xg azxu
(C19)
(1+P))L iAj Gyj + n2(1-P) (1 —4A; )Sa; —2n? P(l}SaJ-SaJ,J+O(x0)
a2
and
2 B B SL B ~Bl . n2(1-P) .pI
Q‘H m-_2r5, I—P)A- +K -1)J; + .=\ 1T, —an{)]J- + s
J 2a2x0( ( ! )J axg( ¢ . 2x¢ !
n2(1+P)( , B Al 2p(»~l31 Aﬁt) 2p( B ) B
+W(AJ +K—1)GJ +H‘x—6— G_; _pj —ﬂ“x—on(/l} +K—1)SJ -—x; KA Upj
55 JI (C20)
2l
+n2pP (AjB+K-1 G;—p;— i | e Bl+n2M3pJH~M5TBI+mszI +0(xo).
(A 51) has been used to simplify (C 19).
The next step is to use (C 5) and the following similar expansions:
P = “; ) —aPxg + Pa?x3 + O(x3) (C21)
and
K = kxo— k%x3+ 0(x3) (C22)

to eliminate A}, [ and K from (C 19) and (C 20). Using these and (C 15), we may write

the varicose (P = 1) and sinuous (P = —1) versions of (C 19) - (C 20) correct to unit order
in xp as follows.

%o[q2 (C23)

+ 2najiza,- —2n2 [;Ljsaj -saj]+ Ofxo),
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al

2 a1
gl = %[ij_l’bf"' Gej—Dej— Gj —2kuy;| + ’%(1 K)J;

(1-4)
a?
—amXJy; + Joj) + ij—{ﬁ, - kz) P + 2kn(ﬂ, + k}ubj
a
+ n2 Aj— k[sj ~Gy;j + pbj] th(/'L + k)(ch DPej)— m2n2(s; + s¢) (C24)
+ I‘lz|:1'|dfr‘j,('u'|}bJ + WC}) - 2M3(pb} + Pc;) 2 Ms(Tbj + ch)] + O(xg) 4

2
sQ 2 I 1
o = )?(2?: Saj— Vi 2n uaj)+ O(x0)= (C25)

0t = I k) (2 B+ (-,
m’[2 2 242 2 g (C26)
——a—*[(ﬂj +k )‘,b;"'{;"j -k Cj}~2knﬂjubj+n (Jj-l-k)j} +0(I0).

C 3. Reconciliation of varicose modes

Consider first expression (C 23) for Q}’Q. This should be equal to Q;; given by (A
55). Using (A 58), (A 67) and (B 45) we see that (C 23) reduces to

v
o)

=2”_2ﬁ+m_21 2n24; ()L _ 2%,

x| @ T ]*2"2(313*'af-5aj]+0(x0) (C27)

H;

and in light of (A 52), the terms proportional to A; may be neglected and this may be further
reduced to

Aj 2}
Q}YQ = ( 2“

+ 82— Aai |+ O(xp).
i ﬂj paj aj — 4y W) [0) (C28)

This is identical to (A 55).

Consider next expression (C 24) for Q;'I. This should be equal to kQy where Qf is
given by (A 56). This is the most complicated expression to evaluate. To clarify this
process let us divide it into three parts:

Qvl i QVA QvB anvC 5, O(x()) (C 29)

where

, -k a1
QJA ij pb_,r"'Gc_; Dej — (JQZ )Gj—%l—kubj, (C30)
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~T ~1
0% = 24— K)J; - am 1y + Iy +';—2[31 -¥)G;

C31
+ 2kerd; + sy — n2(1; — KN Gy~ poy) -n?{2; + )G - p) (&on
and
A1
01 = (1~ k) — m2{sts + )
+ M4(ij + Wch == n2M3(pbj + ch] + MS(Tbj + ch) (C32)

~

s . " . p
The first of these is singular in the limit xy — 0 and must not contribute to .

v A |

Using (B 45) and (C 17) to eliminate uy;, G, J;, and &, from (C 30) - (C 31), we

have
vA _ _ _n? (lj — k)
! axo (ﬂ,} + k)

(4Gj + a2py)) + WGej +aZp; |, (C33)

v 2 2
OF® = M= (o + W)~ 2K (0 + k)i + ':Tz(lj ~ &)(1Gv + ap)

2
+ ':Tz(aj + k)(yGej + a%pey) + 2kn(Gr; — ), (C 34)

0fC =My ypyj— Ty + Yipej— Tej— 2k{4; + klpy]
+ M| YToj— wyj + YToj — wej— 2k(4; + )T (C35)
+ M l{ﬁwbj + poj) + npy; + Ywe + poj) + n2pej— Zk(lj + kXij + pbj]]
where ¥ is given by (A 23) and y; by (B 34). In writing (C 35) we have used the fact that
Mq+3 = —Mg41 — n2M, (C36)
for any integer q, and have written

§ = Msp +MoT + n2Mi(w + p). (C37)

To evaluate (C 33) and (C 34), we must develop expressions for G¢jand Jej-
Combining (2.20), (2.21), (B 33), (B 40) and (A 58) we have that

Ar-1 o
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Using these (A 51) and (A 67) to eliminate G and J, (C 33) and (C 34) may be expressed
as

VA _ 2n2 4 (4.
%" = Aa— ) (C 39)
and
vB _ 2m2 (42 L a%k?| 2n2 2 32 2kn2p (9. 7.

0 = 247 -0k, + %]_ﬁzj(z, 42— 225(1;+ Gow) (¢ 40)
where é} is defined by (A 15). Using (4.10) and (A 52) we see that Q;A does not
contribute to .Qgﬁ and may be ignored. Also (C 40) may be simplified to

v DS 2
off = 2akem? _2n? rf3. 4 ) (C41)
Y Y
Using (B 32), (B 33) and (C 37), (C 35) simplifies to
Q¢ =2M; W+ 2M,0u° — Zk(ﬂ,j + klfbj. (C 42)
Again taking note of (4.10) this may be simplified to
0F° = —2k(; + K)sey. C43)
Now we may recombine (C 41) and (C 43) to write
vI 2¢| A+ &Py 2ak?m?
Q" = —2kn2{; T‘ + Spj |+ . +O(xo). (C44)
] ]

This is identical to kQf where Qf is given by (A 56).
C 4. Reconciliation of sinuous modes

Reconciliation of the sinuous mode is complicated by the fact that expression (A 64)

is not of the same form as (C 18), having the extra term involvin g M%. Combinin g
(1.4.32) and (4.9) we have that

1 .3
M= B~ =225 (C45)

Using this and noting that 1/V2 = Im[k], we may write (A 64) as
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3 = 9f Z AA; (Qn t 5 ,,) + Im[k 2, A,A;(Qr L )] (C 46)

Comparing this with (C 18) we see that Q must be equivalent to A, QQ + 2(n /a )l and

O;' must be equivalent to k 4, 05 2K{n’/a*)3? where Q% 05", 0% and Qfare given by (C
25), (C 26), (A 68) and (A 69), respectively.

Consider first Q;Q. Using (A 19), (A 58) and (B 44) to eliminate H,j from (C 25)
and ignoring the term proportional to m2, by virtue of (A 52), we have

@ _ = & (';)
Next, using (A 67) to eliminate G. oj and G,j, we have, after some simplification and
manipulation,
n? [u +2a ] Aj(yj +a ) .
0%z ol ?3+2n2;1-—-p D5+ Ofxp).
7 22 lu] gy~ B ﬂ; aj ( 0) (C 48)

In this form it is clear that Q;g is equivalent to Z.JQE) + 2(n2/a2)2,j2.
The final task is to show that st} is equivalent to k4,07- Zk(nzlaz)lf. First, we

sl A~
shall use (C 18) to eliminate J; and §; from (C 26), giving

2
+ n Sbj nubJ] + O(x.[)) (C 49)

Next, using (A 58) and (B 44) to eliminate u;, j yields

Q Zk/l[

Gpi—py)]  2km?A.
Q;I = anzlj[sbj— ( ;4 pbj)j,'l'

J
e hi + 0. (€ 50)

Eliminating/y,; and Gy, using (A 51) and (A 67), we have, after makng use of (A 52) and
some manipulation,

1 ] g‘ Zk 2
sI 2 2] 7 J ] m
0; _,._2__1 +kAl 2n —=+—= +=p, + ._._{_’_ +O(x.).
J a { (62 y} 'yj b Shf) aa}ﬁ }} (0) (C 51)

This is the desired result.
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