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In this supplement the details of some of the analysis of §3 of
Kerr(1990) are given. This analysis uses energy stability theory (cf. Joseph
1976a,b) to examine the stability of the background state that is found when a
vertical salinity gradient is heated from a sidewvall to finite amplitude
disturbances. We use this method to find a lower bound for the value of the
non-dimensional heating rate, (, below which disturbances in some sense die
away. The first part of this analysis follows a similar course to the analysis
of the steady thermal boundary layer that occurs when a vertical temperature
gradient is heated at a single vertical side wall (Dudis & Davis, 1971, and

Joseph, 1976b, pp. 29-33.)

We take the full equations for perturbations to the background flow and

non-dimensionalise them with respect to the following quantities:

T with respect to AT , (S.1a)
S with respect to E%I , (S.1b)
oAT
x with respect to h=, &, , (5:Te)

; (-55,)

t  with respect to h2/k: , (S.1d)
u with respect to  k:/h (S.1e)
p with respect to  pok%/h2 . (S.1f)

These non-dimensionalisations differ from those used in Kerr (1989) and §2 of

the paper. The resulting non-dimensional equations are

g% +u-Va + U-Vu + u-VO

“Vp + #(T-S)z + oV2u , (S.2a)

O WV + U-VT + wVT = Vel , S.2b
Bf



g% +wVS + U-VS + w-VS = 7V25 (5.2¢)

Vou = 0, (S.2d)

where the background state is given by

U = (0,0,W(x,t)) , (S.3a)
T = 20ak] 4 (5.3b)
S = "fixt) ~ = - (S.3c)

The Prandtl number, ¢, and the salt/heat diffusivity ratio, 7, are defined as

before. The new non-dimensional number to appear here is

. \
= B4 (S.4)

The boundarv conditions are

w=0 T=0 8.0 ax=0, (S.5a)
and a - 0, T -0, S =+ 0 asx-o . (S.5b)

We restrict ourselves to perturbations to the background state whose
maximum amplitudes are bounded in the whole fluid region and which are
absolutely integrable on 0 < x < ». We define the average of a quantity over

y and z by

i 1 +L +K
A(x,t) = KL~ 7KL J g J " A(X,y,2,t) dy dz (S.6a)

and the brackets < > by
A = I a lt - - S-6



It should be noted that if any scalar function { or vector function g5
vanishes at x = 0 and obeys the- conditions for boundedness and absolute
integrability then we have from the divergence theorem for volume integrals

that

1]
(=]

¢ ¥C )
and (V-q)

(S.7a)
(S.7b)

1
=

Taking products of (S.3a-c) with u, T and S respectively and finding

their averages we obtain

dilul?) + (@ @D = &(T-S)v) + o(u-T2u) (S.8)
4312y + (TuVD) = (TV21) (S.8b)
d_(12) + (Su-V) = r(sv2S) . (S-8¢)

We also need the average of the sum of the product of T and (S.3c) and of the

product of S and (S.3b):

d(18) + (Su-VI) + (Tu-¥8) = (SV2T) + 7(TV2S) . (S.8d)

Substituting for U, T and S gives

GG + adF,n) = KTw-Sw) - o(|Vuj2) (5-9a)

S412) + (Ml t(x,t)) = (V]2 (5.9b)



4352y + (sudt(x,0)) - (Sw) = -r(|¥S[2) , (5.9¢)
SIS + (SNGL(e,) - (W) = -(L (W) . (5.99)

Taking the sum of these, with (S.9b-d) multiplied by weightings Ab’ A, and Ad

respectively, we obtain

F = $-9 (S.10a)
where
& = ( u|2 + ib%TQ + AC%SQ - AdTS G (S.10b)

$ = ~(ndW(x,1)) + HK(Tw-Sw) - A (Tadf(x,1))

- A (ST, 0)) + A (W) - AT (x,0)) + ATy, (S.10¢)
9 = (o|Vu|2 + Ab|vT|2 + ACT[?3|2 + Ad(1+r)VT-VS ¥ . (S.10d)

The values of ’\b’ A, and A g are chosen so that both & and 2 are always

c
positive definite.

If we have the condition, over the set of all admissible functions u, T

and S, that

sup { % } < A < 1, (S.11)

T < -(-Ms. (5.12)



As Dudis & Davis (1971) demonstrated, since the fluid region is unbounded

there is no relationship of the form

sup { 97 ] < B < o, (5.13)
(1V9]2)

or its vector equivalent. Since this supremum is infinite, even if (S5.12)
holds we cannot show that & - 0 as t - «. However, if (S.12) is integrated

with respect to time then we obtain the result that

£(t) - €(0) < -(1-4) Jz o(t’) dt” . (S.14)

If &(0) is initially finite then it follows that, if A < 1, &(t) remains

bounded for all time and also, since & is never negative, that

. t
lin J- B(t') dt° < o . (S.15)
0

t-0

-

and s0o ¥ - 0 as t - .

From this we can conclude that the disturbance vorticity will decay to 0
for large time. Dudis & Davis then went on to show that, although this does
not imply that & - 0, the energy of the disturbance contained between the wall
and some arbitrary fixed distance from the wall will decay to 0, and so the

energy of a perturbation is dispersed over an ever increasing volume.

Unlike the cases where energy stability analysis is applied to bodies of

fluid that are bounded in some direction (e.g. flow between two plates), for a



semi- infinite region

sup { o } = ®, (5.16)
gt (|v6]2)

where # is restricted to bounded functions that are absolutely integrable on
0 < x < . For this reason we must choose AC and Ad so that both the (Tw) and

the (Sw) terms vanish from #. This yields

Ac = % and }d = -%. (8.17)

At this point it is convenient to rescale Ab, g, $ and @ by factors of &

and u by a factor of % so that the new (starred) quantities are given by

* ' *
Ry = A, » %= &,
* ) *
m = 3) ] m = @ L]
1-%
%a = A - (S.18)
Dropping the stars gives
& = (3lu)2 s \3T2+ 482 - 1), (5.19a)
§ = 0 1m0
= -(wuBEW(x,t)) - (A Da (Tuﬁif(x,t)) g (S.19b)

g = (o|Vu2+ [,\b . Q}Qﬂmp ¢ Ljvs - LDyr2 ) L (8.100)

From this we can see that the.requirement that both & and 9 are positive

definite gives the two restrictions on Ay that
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The value of Ay is only restricted by (S.20b) so we are free to choose a value

that minimises this bound for the supremum. The minimum value occurs when

2
Ab = 1%%— to give us the final bound, for this value of Ab’ that

a 1
A1) (Mgt (x,0)) | ¢ #(1-7) 4 4q03 | 5.28
Oy st sup { DTG0 | ST (5.28)

In a similar fashion we find, using the upwelling velocity appropriate to

the large time asymptotics for the érror function temperature profile, that

6 i =% S%
s { WEIC0DI} ¢ LT 0.8 (5.29)

The fluid will be stable” to finite amplitude disturbances if
sup { % } < 1. Combining the results (S.28) and (S.29) gives the condition

that the background state is stable to arbitrary disturbances if

1
- { 4 ] ¢ (:7)8" 9 9983, F(I=T) 4 4903 ¢ 1 . (S.30)
. doyT 26*Jror

Expressing this in terms of Q and the original definition of ¢ used in I and
§ 2 we obtain the condition, for small &, that the fluid is stable to all

disturbances of arbitrary amplitude if

drdt 1 . 62.2283 )2 _
V< e TIvosge [ 1 = ] : (S.31)

This result is (3.14) of the paper.

The second part of the energy stability analysis uses the extra constaint
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on the allowed disturbances by only considering disturbances that are periodic

in the vertical, with a period of Az. Thus
(ll, T? S)(X7Y:Z+ﬁzyt) = (ll, T) S)(X,}’,Z,t) - (832)

We split u, T and S into parts that are independent of x and y and parts that

have zero mean value when averaged over the vertical. We define
u = up(x,y,z,t) + ui(x,t) , (S.33)
where

ui(x,t) = u(x,y,z,t) and L, = u- ¥, (S.34)

with similar definitions for T, Tp, S and Sp' It is straight forward to

show that u; = 0 for all x and t.

We split the terms in ¢ into their mean and oscillatory parts, obtaining

3 = ((agrugice) - (A DF (T T )0 T (x,0)) - (5.35)
But .
iR = Kby o= 0, (S.36)
and so
s = -(wpup%ﬁ(x,t)) ; (Ab—l)ﬁ%(Tpup%if(x,t)) . (S.37)

Hence ¢ is independent of the mean part of the disturbances. The choice of Ac
and Ay , (S.17), is again made to remove the (Tw) and (Sw) from ¥, as these

terms lead to an unbounded supremun-as before.

For any quantity Ap with period Az in the vertical and no mean part the



following inequalities hold:

B a2 < [B)® < e (5.38)

Finding the supremum of $/% for each of the two parts of ¢ we find that

- { (Tgupgif(x,t)) } :

= <(au 2+ (0 LF2T2) 1t () )
1 \ (1+7)2 b 0x
2 [ Oy g7 ) ] - { ( U]Vup|2 + (Ab- ilgi- ) IV 12 ) }

<

i + (1‘*') 3 -
% {Az]? [”(Ab‘ (1:7)2) } Esup'{ ((ou 2+(dy- =7 - iT p2) I J)l)} |

27 ir (1+7)2
Cotu)2 + 0y ) (@)2)
(5.39)
But for any function g(x)
sup { <¢2|HQ } = Sup { |gg| } (S.40)
6 L (42 % L
and so ’
(Ab-l)ﬁ% sup { <Tpup5§f(x’t)> } <
9
1 2 171
Oy 0ot 3 [ o0y 522 ] 1%t 0,0 (5.41)
Minimising the right-hand side as before gives, for Ab = 15;3,
d
i T u 'E(\c £ } (1-7) 4% [ﬁ\z}? 6* :
A-1)a sup | € e < gt [4z)2 & 5.42)
(Ay-Dtt sup | = (

In a similar fashion we find that
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sup { <“p“p%w(x’t)> } g o B%]Q L1) gos (3.43)

Combining these results gives us the result that the background state is

stable to arbitrary periodic disturbances of vertical period Az if

1 {12 2 (1-7) §*3 .(1‘7) 5@% 'flz 26" & 3 . S.44
= [2}] T IR = v o

Re-expressing this in terms of Q and 6 gives the condition that the background

state is stable, for small values of 6, if

Az2§3 } .
164/7(1-7)272

Q < 4r [§§j4 (1-7)4 { 1 - (S.45)
The experiments of Chen, Briggs & Wirtz (1971), Huppert & Josberger
(1980) and Huppert & Turner (1980) always have that Az < 1. If we use this

value then we get the condition that the fluid is stable to periodic

disturbances with non-dimensional period less that 1 if

Q < 6475(1-7)% {1-0(8)} ~ 19,585(1-7)* . (S.46)

This is result (3.21) of the paper.



