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4. Asymptotic analysis

A number of limiting cases are analysed asymptotically in this section. The results
are summarised in Table 1 and Figure 1. The exponential term in equation (3.12) makes
it appropriate to consider two limits for asymptotic analysis. In the shallow layer ap-
proximation d << 1, i.e. the layer depth H is much less than the length scale £ of the
equilibrium density distribution, and the exponential term is approximately linear, with
consequent simplification. For a deep layer, d is large and, in the basic state, the cells are
concentrated in a boundary layer at the upper surface, so that the method of matched
asymptotic expansions can be used.

The purpose of the subsequent asymptotic analysis is to give insight into the fluid
mechanics of bioconvection and to provide checks on the numerical solutions of §5. Wher-
ever possible ¢ is taken to be complex and non-zero, but in many cases the analysis
becomes so complicated that it is necessary to resort to numerical solutions of transcen-
dental equations, which offer little analytical insight. In such cases attention is confined to
the neutral curves on which Re(o) = 0. Moreover, for all the parameter values considered
analytically below, the numerical solution shows that Im(o) vanishes, i.e. there are only
stationary solutions. Attempts at asymptotic solutions for other parameter values lead to
such complications that the numerical solutions of §5 are preferred; such parameter values
do sometimes exhibit oscillatory instability.

4.1 Shallow layer approximation, 0 < d <<'1

Rather than solving (3.15) in the shallow layer approximation, it is more convenient
to consider equations (3.11) and (3.12), which we rewrite as

£ e o &

A~ E)(@ — &’EY)W = —dREk*® (4.1)
and
d? d 272 5.8
(E—da—d k —a)@=d(1+dz+d‘z /2-!—.))(
[1— G(1+ ap)d?/dz* + SPE*G(1 — ao)]W (4.2)
where

k=k/d. (4.3)

The leading order versions of equations (4.1) and (4.2) can be solved in principle by
elementary methods. However, once the boundary conditions are applied, the solution for
the neutral curve R(k; G, ao) leads to a transcendental equation, which has to be solved
numerically. Instead, we choose to simplify (4.1) and (4.2) further to gain a better under-
standing of the analysis and to obtain results which can be compared with the numerical
solution of the full linear stability problem in §5 below. Therefore we first consider small
wavenumbers where k ~ d and so

kF~1. (4.4)
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This is equivalent to scaling k* on £~! rather than H~!, and corresponds to a horizontal
planform of wavelength A* ~ £, much greater than the layer depth H.

We now concentrate on the analysis of neutral curves and examine the possible bal-
ances between the terms in (4.1) and (4.2) which indicate the relevant asymptotic ex-
pansions. For non-vanishing solutions, which satisfy the six, leading order, boundary
conditions o P

E=W=E=Uat2=—1,0, (45)
the highest order derivatives in (4.1) and (4.2) must be retained at leading order. It is also
readily shown that in each of the cases discussed below the leading order balance in (4.1)
must give

d? o W
(Zi? B Sc) dz?

otherwise there is only the trivial solution. Moreover (4.5) represents the balance between
the viscous term d*W/dz* and the buoyancy force on the right hand side which drives the
flow. Without loss of generality, we also specify that

= —dRk*® , (4.5)

3=0(1). @)

There are then four possible, leading order balances between the terms in (4.2) which
are shown below, together with the appropriate leading order versions of (4.2), which we
recall is derived from the cell conservation equation (2.3), when o = 0.

Case I:
G<O(d'),R~1.

d?®/d2* =0.

Case II:

G<0(d), R~ i

d*®/dz? = dW .

Case III: .

G~1, R~d2.

d*®/dz? = d[W — G(1 + ao)d*W/d2?] .

Case IV:

R<0O(@™), RG~d?.
B3 /dz* = —dG(1 + ap)d*W/d2* .

The regions of (R, G) parameter space covered by these cases are illustrated in Figure
1. In case I, the leading order balance in (4.2) is purely diffusive; we shall show below
that there is a second order balance between diffusion and the swimming of the micro-
organisms. In case II, the leading order balance is between diffusion and advection of the
micro-organisms by the bulk fluid flow, while the balance also includes gyrotaxis due to
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vertical shear in the flow in case III. Finally, in case IV, diffusion balances the gyrotactic
term alone. We shall restrict attention to cases I, II and IV, although mathematically II
is a special case of III, because once again the latter leads to a complicated transcendental
eigenvalue problem which itself requires numerical solution.

Casel:k~dand GL<O(d™!), R~1

Consistent with (4.7), we choose
®~1, R~1,G~dt, Wn~d

and expand &, R and W in powers of d, so that

oo (=] o0
&= d"®,, W=) d"W,, R=) d"Ra, (4.8)
n=o n=1 n=o
and we write ,
| G=d'G_; (G-1=0(1)). - (4.9)

To obtain information about the growth rate in this particular case, we allow o to be
non-zero and, since it turns out that o ~ d?, we expand it as

oo
= Z d"op, (4.10)
n=2

a priori, for convenience. On substituting (4.8), (4.9) and (4.10) into equations (4.1) and
(4.2) and the boundary conditions (3.13), we find at leading order that

d*wW,

e E?Ry®0 =0, (4.11a)
d2®
dz;' =0, (4.11b)
aud 4o AW |
_a};q:WIZ d1=0atz=—1, 0j (4116)
z
while at second order
d4W2 “'2 "'2
=3 k*Ro®1 = —k"R1 P , (4.12a)
2d, dd, d>Wy
_ 9% 4 4.12b
72 - 1(1+ o) 2 ( )
with boundary conditions
Eg?—l——(ﬁozwzzd;/zz:[}atzz—l’ 0. (4:12(3)
z
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The second and higher order systems of equations are inhomogeneous and must satisfy
solvability conditions. These conditions are found in the usual manner (Ince, 1956): each
system of inhomogeneous equations is multiplied by the adjoint of the homogeneous system
and integrated from z = —1 to 0, and the resulting integral must vanish. This is equivalent
to setting to zero the integral of the cell conservation equation (4.2) over the layer depth.

The solvability condition at O(d) is satisfied identically, independently of o2 and Ry,
while at O(d?)

0 0
(k2 + 0’2)/ éodz —1—/ Widz =0 (4.13)
£ i

and at O(d?)
0 0
(E2+ag)f (I>1dz+/ Wadz
~1 -1

-1 -1

0 0 0
= G_l [1 + Qp — (1 - Cm)?éz]/ W]_dz - 0'3/ ‘I’gdz - / ZWIdZ . (414)
-1 ;
The leading order solution is |
o =1, Wy = —Rok2(2* +22° +2%) /24, (4.15)

where ®, has been normalised without loss of generality. Imposing the solvability condition

(4.13) gives
g9 = ;.:72 (% = 1) . (416)

The second order solution is

D)=z — G_1(1+a0)W1 5

Ry, k*Ry FHR: , kR, KRy FR2, ,
— - —G_ ] - —G_.(1
W2 = (4 5~ G-l + ) 58)e" + (=5 or G-l +a0)5zF)2
72p 7.2 4 .42 _8 7 6 :
EHyx FPRE & ey e B (4.17)

T120 © 24 720 '56 ' 14 | 12

and the solvability condition (4.14) yields
_ E°Ri kR, 1 k*Ry 3Ry (1 + )

03 = on ~ Trap 15 T G-l + o)l + SoF Gl — e+ e

Thus, with this choice of scaling, there is just one solution, the vertical structure of
which consists of one bioconvection cell and which we therefore class as mode 1. On the

neutral curve ¢ = 0 and then

(4.18)

R =1720{1 + d[% + G_1(1+ ao) — 2K2G 1 (5 — 2a0)/T|} + O(d?) . (4.19)
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Proceeding to the next order, it can be shown that, when G = 0, the neutral curve is

1 13 17k?
R=T20{l + =d+(—~
201+ 34+ (305 + 262

Yd*} + 0(d®) . (4.20)

Thus, in the absence of gyrotaxis, ¥ = 0 is a local minimum of the neutral curve and the
wavelength of the most unstable mode is infinite (as found by CLS). On the other hand, in
the presence of gyrotaxis, (4.19) shows that k£ = 0 is a local mazimum, since aq < 1, from
which it follows that the most unstable mode must occur at some value of k > O(d), as
suggested by observations (e.g. Kessler, 1985). Examples of the neutral curves are given
in Figure 2(a) when d =0-1, G =0, 0-5 and o, = 0-2.

The critical value of G at which k¥ = 0 changes from being a minimum to a local
maximum of the neutral curve can be found by noting that, if G = O(1), then linearity
shows that

B d 5 13 =5, 17 2 3
and the critical value of G is
G, 17 O(d) . (4.22)

~ SoE—Bag)

Estimates of ¢ for fixed values of R can be obtained from (4.16) and (4.18), which
provide a useful check on numerical calculations, and in particular we note that gyrotaxis
introduces a dependence on k*.

The preceding analysis is readily shown to be valid in the limit as £ — 0, but not for
values of k >> O(d). However it can be extended to the general case when d, k << 1, by
expanding in powers of both d and k2. This is done in Appendix B, and it shows that on
the neutral curve

R=T20[1+ g + kz(% - 2_76'_(5 —2a9))] + O(d?,dk?, k*) (4.23)

(c.f. (4.21)). A special case of this result occurs when
dr <<k <<1 (4.24)

and the expansion proceeds in powers of k*. This is the scheme used by CLS, but their
analysis was not strictly valid because k was allowed to tend to zero without regard to the
restriction (4.24). Instead, (4.23) shows that

R— 720 as d,k* = 0.

The neutral curves given by (4.19), (4.20), (4.21) and (4.23) all show that £ = 0 is
a minimum of the neutral curve when G < G,, and that R decreases monotonically as
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k increases when G > G., provided that d and k¥ << 1. Thus, up to the accuracy of
the expansion schemes, we conclude that the most unstable wavenumber is k. = 0 when

G < G, and k. > O(1) when G > G..

The inequalities which define Case I do not specify the scaling uniquely, even when
restrictions (4.6) and (4.7) are imposed. However a little analysis shows that the only
possible scalings for non-trivial solutions are

®~1,R~1,W~dand G<O(d™?) (4.25)

and so there are no other fundamentally different solutions.
Case II: k ~d and G < O(d),R ~ d~2.
We suppose that o =0,

d~1,G~d, R~vd2and W~dt, (4.26)

and expand the variables in powers of d:

o0

® = Zﬂ:d“@n , W= id“Wn R= i;d“Rn , (4.27)
= ~

and define
Gy =G/d=0(1) . (4.28)

With these expansions the leading order terms in the governing equations (4.1), (4.2) and
(8.13) give

d*W_y ~o
— + R _k*®, =0, (4.29a)
d*®,
F W_1=0 (4.290)
and
d®o/dz = W_y =dW_1/dz=0at z=-1,0. (4.30)

Eliminating ®; from (4.29) and (4.30) yields

dEW_4
dz%

+ R_gézw_l =0 ’ (4.31(1)
W_y =dW_1/dz=d*W_,/dz®* =0at z=-1,0. (4.31b)
Equation (4.31a) has solutions

W_1 =Acos(wz) + Bsin(wz) + exp(wzv/3/2)[C cos(wz/2)
+ Dsin(wz/2)] + exp(—wzv/3/2)[E cos(wz/2) + Fsin(wz/2)] ,

(4.32)
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where )
w® =R_k2. (4.33)

A, B, C, D, E and F are constants determined by applying the boundary conditions
(4.31b), and for a non-zero solution w must satisfy the eigenvalue problem
sin(w/2) =0 (4.34a)
or
cos(w/2) cosh? (wv/3/2) — 2 cosh(wv/3/2)
+2 cos(w/2) — cos®(w/2) =0 . (4.34b)

The roots of (4.34a) are w = 2mn (m = 1,2,...). For large values of w, equation
(4.34b) is dominated by exponentially large terms and must have roots at cos(w/2) >~ 0
which suggests that (4.34b) has roots

w~(2m' +1)r (m'=0, 1, 2,..). (4.35)

In fact, it easily checked numerically that there is no root corresponding to m' = 0, but
that for m’ = 1 (4.35) is already accurate to within 1% and becomes successively better
for greater values of m'. So for a non-trivial solution w takes values

Wy =27, w3 ~ 37 ,....

At this point, we have multiple solutions to the linear stability problem. Correspond-
ing to the roots ws, ws ,..., there are branches of the neutral curve R(®)(k), R®)(k),...
given by (4.33). We must also examine the structure of the vertical velocity field W(z) to
determine the mode or type of solution. A solution is said to be mode n if W(z) changes
sign (n— 1) times for —1 < z < 0. In other words mode n (n = 1,2,...) consists of n layers
of convection cells stacked vertically one above the other throughout —1 < z < 0 (see §3).

The neutral curve of the smallest root wy is given by (4.32) as
R® = (2r)8 /d?*k® + O(d™') ~ 6-15 x 10*/d*k* + O(d™) ,
and the constants A, ..., F can be calculated for this branch to show that
W_1 o sinmz[sinh(w/3) cos(rz) — cosh(7v/3/2) x sinh(n[z + 1]v/3)]

which is antisymmetric about z = —% and is therefore mode 2.

In Case II, the only alternatives to the choice of scales (4.28), which are consistent
with (4.6) and (4.7), are of the form

d~1, Rrd 2, Wr~d?tand G~d™(m=2,3,..).

Since G; does not appear in the leading order problem (4.29), the alternative choices of
scaling in which G is of smaller magnitude will not change the nature of the leading order
solution, but just make refinements at higher orders.
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In order to interpret the results of Cases I and II, we suppose without loss of generality
that (4.7) holds and ask what solutions are possible for a given value of G. It is clear from
the preceding paragraph and from (4.27) that for G < O(d), Cases I and II both provide
solutions. Case I gives the R(!) branch corresponding to mode 1, and Case II provides the
higher branches and modes. This is summarised in Figure 1 and at the top of Table 1. Also,
when G ~ 1, Cases I and III both provide solutions. Although, as mentioned previously,
Case III has not been completely analysed analytically, it is reasonable to expect that
again Case I gives the R(*) branch and Case III gives the higher branches R(®) ~ d~2.

e . L e B R T e L B e N S U ey T S P T S TAT

ot o R BT AR i




Case IV: k ~d and R< O(d™!), RG ~ d~2

As in Case I, we analyse the shallow layer approximation to the governing equations
in the limit of small wavenumbers. Because of the complicated nature of the eigenvalue
problem which arises here, we exclude the possibility of oscillatory solutions on the neutral
curves, in the more detailed calculations, by setting o = 0. Possible scalings are of the

form
&~1,G~d™, Red™ 2 W~d™ ! (m=1,2,..), (4.36)

and the problem subdivides naturally into the three cases m = 1,m = 2 and m > 3. When
m =1, G ~ d~! and we have already demonstrated that Case I provides a mode 1 solution
when G ~ d~!. Thus we might anticipate that the new scaling yields the higher order
modes by analogy with Case II. Moreover when m > 2, we shall show that Case IV gives
all the solution branches, including the mode 1 solution. What is more unexpected is that
when m = 2 and G exceeds a critical value, the solution for the lowest branch breaks down
at small wavenumbers. We conjecture that in this case oscillatory solutions exist and we
shall indicate an appropriate scaling for such solutions.

We begin by se.tting m = 2 and define
=] oo
&= d"®,, W=)» d"W,, R=) d"R,and G=d"’G_,, (4.37)
0 1 0

which is consistent with (4.6) and (4.7). Expressions (4.37) are substituted into equations
(4.1), (4.2) and (3.13), and at leading order

d*wy

7+ kRy® =0, (4.38)
&2
@'[@0 + G_g(l + CEQ)W]_] =0 (4385)
subject to the boundary conditions
d® dW;
d—ﬂ=W1=d—1=Uonz=—1,{). (4.38¢)
¢ z _

This system of equations has the solution

@0 = G_z(l —!— CYQ)(K - W]) 5

Wy = Acoswz + Bsinwz — (A + K)coshwz — Bsinhwz + K | (4.39)
where 3
w* = k2RyG—2(1 + ) (4.40)
and A, B and K are constants which satisfy
cosw — coshw  sinhw — sinw A coshw —1
( sinhw + sinw cosw — coshw) (B) - 'K( —sinhw ) ’ (4.41)
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This equation can in principle be solved (for A/K, B/K) for any value of w save that for
which the matrix on the left hand side is singular, in which case K = 0.

The boundary conditions on ®q to this order are degenerate and we proceed to the next
order, O(d), to find an additional constraint on @, arising from the solvability condition.
Similarly, there is an additional constraint on ®; at O(d?), and so on to higher orders. As
in Case I, the solvability condition is found by integrating the cell conservation equation
over the layer depth. It turns out that the solvability condition is satisfied identically at
O(d), but at O(d?) it is easily shown that

. 0 0 2 Y
K? f Bodz = / {%G—z(l-!-ao)(dzwlfdz?)—(G—z(l—ao)kz+1)W1}dz
=1 2]
which implies that
0
f Widz = —F(k; G2, a0)K , (4.42)
-1
where 42
5 —2(1 k
T 00) = S thaa (4.43)

1+ G_z(l — O.’[])]:Jg - G_z(l -+ 0:'0)(;22 + 1) :

using the leading order solution (4.39). Evaluating the integral in (4.42) and incorporating
(4.41), the conditions on A, B and K can be written as

cosw — coshw sinhw — sinw 1 — coshw A :
sinhw + sinw cosw — coshw sinhw B =0, (4.44)
sinw —sinhw cosw + coshw —2 w —sinhw + F K

which is an eigenvalue problem for w, and hence for R. Equation (4.44) has a non-trivial
solution if and only if

w(1+ F)(1 = cosw coshw) = 2[sinhw(l — cosw) + sinw(1 — coshw)] . (4.45)

The roots of (4.45) and the corresponding solutions (4.39) are discussed in detail in Ap-
pendix C. There is a set of even roots, associated with even modes, given by

wom ~ (dm' +)7/2 (m' =1, 2,...)

independently of the value of F. The odd roots do depend on F' and, when G_(1+ag) < 1,
there is also a set of odd roots with associated odd modes such that

0fLwyLwlws ...
The most unstable branch is

RW = w#/k2G(1 + o) + O(d) (4.46)
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and mode 1 is the preferred mode. When E>> 1, w; =~ 37/2 and therefore R\ «
k2 so that disturbances of shorter wavelengths are more unstable than those of longer
wavelengths. The behaviour of R®) as k — 0 can be calculated by expanding (4.45) in a
Taylor series about w = 0 which shows that

ot 720G _5(1 + o) k2
17 1 - Go2(1 +ap)

0<k<<l, Goo(l+ap)<1)

(see Appendix D) so that

RW - 720/[1 - G_s(1+ o) as k — 0 . (4.47)
" The roots w,, (n > 1) do not tend to 0 as k tends to 0, so
R™ k2?5 c0ask—0 (4.48)

for n > 1.

Hurle et al. (1967) considered the Bénard problem with boundaries of finite con-
ductivity and were able to show that, in the limit of perfectly insulating boundaries, the
Rayleigh number of the lowest, odd mode tends to 720 as the wavenumber tends to zero,
and the Rayleigh number of the first even mode tends to oo as the wavenumber tends to
zero. Thus the unusual contrast between the behaviour of R(*) given by (4.47) and that
of the higher branches given by (4.48) has a parallel in Bénard convection. Indeed this
comparison was noted by CLS but, when gyrotaxis is included in the analysis, k = 0 is
a local mazimum of the neutral curve R(?) both in this case (which we shall demonstrate
later numerically) and in Case I, whereas CLS, and Hurle et al. (1967), found that E=0
was in all cases a local minimum.

It can be shown that there is a cfitical value of F'| F, ~ —0.75, such that the root w;
does not exist when F, < F' < 0. When G_2(1+ &) < 1, F' a.lways lies outside (—1,0),
but when G_3(1 + ap) > 1 and Eis sufficiently small, F. < F' < 0 and the branch R(l)

corresponding to mode 1 does not exist.

We now consider the other possible scalings given by (4.36), and the analysis hinges
on the solvability condition (4.42). It is readily seen that when m = 1, and the variables
are expanded in powers of d accordingly, solvability requires simply that

0

Wedz =0,

=1
while if m > 3, the solvability condition becomes

g 1 BPK
f W oy e MDTOOEE
—1 (1 -+ a'(]) + 20.’0!'{?2

Suppose firstly, that m = 1: the analysis proceeds as before, when m = 2, but with F
now set to zero, and we conclude that w; does not exist for any values of k, i.e. the most
unstable mode when m = 1 is mode 2.
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(see Table 2), so that overstability is unlikely to be found in such a suspension, but as
discussed later it is possible that overstability could be found in suspensions of different
species of micro-organisms.

We conclude the shallow layer analysis with the following observations. For small
wavenumbers, k£ ~ d, and when G = O(1), mode 1 is the most unstable mode and the
neutral curve has a local minimum at k¥ = 0. As G increases to O(d™!), k = 0 becomes a
local maximum. It can also be shown that R() ~ k2 as k — co when G = O(d™1) (see
Appendix E), so that R®) must have a global minimum when & > O(1). This leads to a
prediction of a critical wavelength for instability which is finite. Finally, for large values
of G > O(d™?), oscillatory modes are found.

4.2 Deep layer approximation, d >> 1

When d >> 1 the exponential profile of the equilibrium solution gives a boundary
layer at the upper surface containing a high concentration of cells. Variables are therefore
expanded in inverse powers of d and the method of matched asymptotic expansions is
used to resolve the boundary layer. From equations (3.12) and (3.13), we expect @ to
be exponentially small in the outer region, away from the upper boundary layer, where
z = O(1). The numerical results of §5 suggest that for oscillatory solutions, which are
found for certain parameter values, Im(c) = O(d?) and should therefore be found in the
leading order terms of the asymptotic analysis in the boundary layer. However, attempts
at a suitable scaling to achieve such a balance have been unsuccessful, as we describe below.
Thus the following analysis is restricted to cases where ¢ = O(1), in which case it is shown
that o is always real. For clarity, we first consider neutral curves, on which Re(s) = 0,
and suppose that Im(o) = 0 also.

When d >> 1, the governing linear stability equations (3.11) to (3.13) in the outer
region become

®=0
and
d2 242
(— —k)YW(z)=0 (4.51)
dz?
subject to boundary conditions
W =dW/dz=00nz=-1 (4.52)

and matching conditions as z — 0. The general solution of (4.51) and (4.52) is
W = —kA(z + 1) cosh[k(z + 1)] + [A + B(z + 1)] sinh[k(z + 1)]
where constants A and B can be expanded in powers of d, e.g.
A=Ag+d A +dPA 0+ ...
In the inner region, define

zr =dz=0(1) and Dy =d/dz;r ,
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in terms of which the equations become
(D} —d7*kF*)’W = —d~°RE?® , (4.53q)

(D} — Dr — d7*k*)® = —dexp(21)[G(1 + a0)D} — G(1 — ao)d2k* —d72|W  (4.53b)

and
(D;—l)‘f’=W=DIPV:Oa.t zr=20

with matching conditions as z; — —oco. As in the shallow layer approximation, there are
several balances possible between the terms in (4.53) but the presence of the exponential
term in (4.53b) makes the analysis more difficult and we restrict attention to the case when

G<Od?*andW~dlasd— oo

which covers the parameter range of interest in experiments, as will be discussed later (see
also Table 2). In particular we define

W= id-nwﬂ . D= i::d‘“@_ﬂ ,

R=) d"R_nand G=d2G_,, (4.54)

—4

where & ~ 1 as in (4.7). Again for buoyancy to drive the flow, the magnitude of the right
hand side of (4.53a) must balance the largest term on the left hand side.

Substituting the expansions (4.54) into (4.53) gives at leading order
DIW_; + Ryk*®y =0,
Di(Dr-1)%, =0,
and at second order
DIiW_y + Ryk*®_; = —R3k%®, ,

Di(Dr—1)%_,=0.

The leading order equations show that the balance in the cell conservation equation is
between diffusion and the up-swimming of the micro-organisms.

The first and second order solutions, when the boundary conditions at z; = 0 have
been imposed, are

W_1 = z}(a—12r + B—1) + K> Ra(1 + 21 — exp(21)) ,
® = exp(z1)
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and ) . .
W_a = zf(a—2zr + B-2) + k*R3(1 + z1 — exp(zy))

@—120:

where a_y, f—1, a—2 and f_s, are constants. When the inner and outer solutions are
matched in the usual manner (see e.g. Kevorkian & Cole, 1981), it can be shown that
there is a non-trivial solution if and only if

(Ao + Bo)sinhk — kAgcoshk =a_; =a_,=6_; =0.

The Rayleigh number, Ry, is determined from the solvability condition on the inner system

of equations by integrating the cell conservation equation at third order from z; = —o0 to
0. This gives
Ry =2/[1-Go(1+a0)], (4.55)
k*R4sinhk
AU =T iRy, a9
sinh” k — %2

L Byi= vk2R4(k coshk — sinh k)
and '
B_z = k*Ry(sinh kcosh k — k) /(sinh® k — £?) .
Equation (4.55) is valid provided that
Goa=dG<(14+a)™ !, (4.56)

and it is reasonable to suppose that if (4.56) does not hold then oscillatory solutions may
exist, and an asymptotic analysis based on a scaling in which ¢ = O(d?) is required. To
find the dependence of R on the wavenumber &, the inner solvability condition at fourth

order implies that
R; =4R4B_5/k?

so that
R=

24* {1 +4g! k(sinhk cosh k — k)
1—d2G(1 + ) sinh? k — k2
R3 is a monotonically increasing function of k and it is readily shown that the above analysis
is valid in the limit as & tends to zero. Thus the critical wavenumber predicted by this
analysis is zero, provided that (4.56) holds and k¥ < O(1). However the numerical solutions
of §5 show that for values of G larger than some critical value G, the most unstable
wavelength is O(d), giving convection cells of a horizontal wavelength commensurate with
the sublayer depth /. When d = 40.0 and oy = 0, then 0.7 < d?G. < 0.8 but the
asymptotic analysis does not predict G., unlike the shallow layer case, suggesting that d
has to be very large for good agreement.

+ O(d‘Q)} ; (4.57)

A calculation similar to that leading to (4.57), using the same inner and outer vari-
ables, gives the growth rate o(R, k) when o = O(1), and after some algebra it can be
shown that

=i (Rl;(—}:)(k)) FiOd~26.47%) (4.58)
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where R(k) is the neutral curve given by equation (4.57). In this case ¢ is real and so
the solution is stationary. Equation (4.58) has been derived from a more complicated
transcendental equation by expanding in a Taylor series in powers of

s_ B—R(k)
~ "R(k)S. °

which is assumed to be small, given S. ~ 20 in the experiments.

The possible balances between terms in the solvability conditions can be examined
to show that the neutral curve is given by an expression of the form of (4.57) wherever
G satisfles (4.56). The full leading order solution (i.e. combining the inner and outer
solutions) can be shown to be mode 1.

Returning to the question of oscillatory solutions when Im(o) = O(d?), it is straight
forward to show that the scaling in (4.54) leads only to the trivial solution unless both
Im(c) = 0 and 0 < O(1). It appears that terms on the right hand side of (4.53b) are
required at leading order to find a non-trivial solution, but such a scaling yields an ordinary
differential equation with exponential coefficients which we have been unable to solve
analytically.
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Appendix B

Suppose that d,k* << 1 and G = O(1) in Case I of §4.1 and consider the shallow
layer equations (4.1) and (4.2), with boundary conditions (3.13). We expand the variables
in powers of both d and k?, and write

Qi éo + d‘il,g + th‘f’g,l + d2“i’2,{] + dk2&'1,1 -+ kéé’o,g + -

W = d_lkgﬁ/_l,I + kQWO’i + d_1k4W_1,2 + dkzﬁ’rj_,] - k‘iﬁfo,z - d_lkeﬁfv_ll;g Froww
R=R,+ d-él,ﬂ + kzﬁo,l v g

and

o= k25,0’1 + dkza’l,l + ké&glz + ...

These expansions are substituted into the governing equations (written in terms of
k rather than k) and systems of ordinary differential equations are derived at
0(1), O(d), O(k?),... . These are solved to give

; |
®=14+dz +k2}?’2% {5—%——3 3—z4+30G(1+au)(22+2z+1)] + O(d?,dk?, k*) ,
. RO 27,2 ‘é 'Rl,ﬂ 2 2
W_—Mz(z +22+1)+d 120 22(14 22+ 2°)
2|, o, Boa R 5(22* +62° +52% —1)

T (=24 557507 2
5 (228 + 1027 + 1528 — 142* — 202 — 13)
7202” 14
R? 30(32°—1225—1424—142-9 R
G + ) T ) TG 22 1)) + O K )

where the solvability conditions at O(kz), O(dk?) and O(k"‘).yield

_ R 1,
%01 = 75
= 720(_"2_+R 0)
. (2+604/S) B Ry, 5, 3G(1+a0) ) Ha
! oz = D) 0 Tl T 7 T 720G(1 %) + 735

Setting o = 0 gives the neutral curve (4.23).
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Appendix C

Here we consider in detail the solution of the eigenvalue problem of Case IV in §4
given by equations (4.39), (4.43)-(4.45). Because this analysis is complicated, we proceed
in several stages.

(a) Roots of (4.45)

()

(1)

Even roots:
Equation (4.45) has one set of roots which satsify

1 —coswcoshw =0, sinw >0, (C1)

independently of the value of F'. We write these roots as 0 < ws < wy < ... with
corresponding branches of the neutral curve R(?), R®) ... | given by (4.40). These
give solutions of mode 2, mode 4, etc. because, at these values of w, K in (4.39)
is zero and

g N _- h
Wi :A{coswz—coshwz+(c?sw b

sinw — sinhw

)(sinwz—sinhwz)} . (C2)

where A is an arbitrary constant, so that Wi(—3) = 0, and the solutions (C2)
are antisymmetric about z = —1. Thus (C2) gives even modes. We can readily
estimate the eigenvalues of the even modes since cosh w grows exponentially as w

increases. To an error of less than 1%,
wy = 5m/2

and in general
wa >~ (dn+1)r/2 (n=1,2,...).

These roots are shown as straight lines parallel to the F-axis in Figure 11.

0Odd roots:
The values of the odd roots of (4.45) depend explicitly on the value of F, given
by (4.43). When |F| >> 1, the odd roots satisfy

1—coswcoshw~1, sinw <0, (C3)

so that w ~ 3x/2, 7x/2, 117 /2,... in the limits as ' — *oo. The behaviour of
the first three odd_ roots wy, ws and ws as F' varies is shown in Figure 11. In
particular, for values of F' between —1 and 0, the loci of the odd roots cross those
of the even roots, as do the corresponding branches of the neutral curves. In
addition, the root w; vanishes when F, < F' < 0, where Fi o~ —0-75. To interpret
these results, we need to discover how F' varies as a function of G_2, «¢ and &,
and to find the mode of the solution for a given value of w.

18



(b) Values of F(G_2, ao, E:)

The values of F, defined by equation (4.43) are sketched in Figure 12 for the two cases
G_2(1+ao)$1. When G_5(1+ag) <1, F does not take values in [~1,0] and is singular

at a critical value of k given by
=[1-G-2(1+ a)]/2G2ap .

Thus in this case, the loci of the odd modes do not cross those of the even modes for any
valaues of k. Moreover, since

w?n»—l(F = +OO) = w2n—1(F = '_00) (T& = 1,2, '") ’

there is no discontinuity in the valaue of w as k passes through k..

When G_3(1 + ag) > 1, F is finite and negative for all values of k, and takes values
between —1 and 0 for sufficiently small wavenumbers so that the crossing of roots does
‘occur and the branch corresponding to w; is not found.

(¢) Modes

The structure of Wi(z) does not depend explicitly on the value of F', but only on
the value of w, because when (4.45) is satisfied, the matrix in (4.44) is of rank two and
the eigenvector (Ao, By, Ko)T can be determined from the top two rows of the matrix
(apart from a normalisation factor). So, given a value of w, Wi(z) can be found from
(4.39) and (4.44). The results of such calculations are summarized in Figure 11. Even
modes are found only when w = wq, wy,..., while mode 1 is found wherever w < ws.
Higher odd modes are found when w > ws as indicated in the figure. Also found are ‘wavy’
modes 1(3), 3(5), 1(5) etc. The first digit indicates the number of convection cells stacked
vertically on top of one another in —1 < z < 0, while the digit in parentheses indicates the
total number of extrema in the W;(2) field. Examples of these and other modes are given
in Figure 13.

In conclusion, when G_3(1 + ap) < 1, there are solution branches RW, R .. cor-
responding to modes 1,2, ... for all values of k, mode 1 being the most unstable for any
particular value of k. However when G_2(1 + ag) > 1, the branch R is not found at
sufficiently small values of k, and then R(?) is the most unstable branch, corresponding to
mode 2.
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Appendix D
Derivation of Equation (4.47)

Equation (4.45) is expanded in powers of w(0 < w << 1) to give

w20 w® 5w® 13
A+FNG =7 =% “exa tO)
which implies that |
FxT
4 _ : 8
w1—7+12F—|—O(w ) (D1)

which is consistent provided that 0 < F' << 1. When (4.43) is substituted into (D1), we

find that )
. T20G_(1+ag)k® -

k— O
g pu o T L
provided that G_s(1 + ag) < 1, and (4.47) follows directly from (4.40).
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Appendix E
Shallow Layer Analysis when k = O(1)

With £ = O(1) and o = 0 the shallow layer approximation to the governing equations

d?
(G2

is

— k?)*W = —d'RK?3

d
(E — da — ke =d(1+dz+..)1-G1+ ceo)—— + E2G(1 — a)|W

so that when

&, W,dG, and d"'R = 0(1) ,

the leading order problem is

(L _ppw = —a'Ri*e

dz? .

(— —E*)(@+dG(1+a)W)=0,
subject to boundary conditions
d®/dz=W =dW/dz=0 on z=-1,0.
The general solution is

¢ =—dGW ,
W = Acosh(wy2) + Bsinh(wyz) + C cosh(w—z) + Dsinh(w_z)

where
wi =k? £ k/RG(1 + o) -

Application of the boundary conditions yields the following eigenvalue problem for
Wt '

w—_[1 — cosh(w4) éosh(wﬁ )] + ksinh(wy ) sinh(w_) = 0 ;

In general, this last equation has to be solved numerically, but in the limit as k¥ — oo,

R —2E*/G(1 + a) -
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Figure Captions
Figure 11
Plots of the eigenvalues w,(F') in Case IV. (See Appendix C.)

Figure 12
Sketches of the function F' defined in (4.43):

(a) PGl +ap) <1; k2=[1-dG( + a)]/2d*Gay; and
(b) ?G(1+ @) > 1.
(See Appendix C.)

Figure 13
Graphs of the vertical velocity field W(z) in Case IV for different values of w, showing

the different modes which are found:

(a) w =4-50 — mode 1,
(b) w = 7-85 — mode 2,
(¢) w=13-50 — mode 1(3).

(See Appendix C.)
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