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To derive (2.13) it is convenient to first Fourier expand u and p(S) in
<u,u¥p(8)> and <uu¥p(8)/3x,>. This derivation is limited to a weakly
inhomogeneous turbulence for which <uu> is proportional to exp(2a-x) where a is

constant and directed along x,; (i.e., a-x = ax,). A simple model for this u is

u = uCexp(ax,) (c.1)
wnere O is statistically homogeneous; i.e., 3<uCu®>/dx, = 0. The
Fourier expansion of u is given by

u = (2m™3 Jdggokexp(ig-g + ax;), (real k) (C.2)

where k is real, and ga is the Fourier transform of u® = u exp(-ax,).

We also need the Fourier expansion of p(s), which, since it is given by

v2p(8) = -v-(u-w), (C.3)
is proportional to exp (2a+x) when (C.2) is substituted for u.
Therefore, we may define a homogeneous pressure field p° by

p(s) = pO exp(2a-x)
(C.4)

and Fourier expand p(s) as

dk
p(s) - ng%y? pp exp(iskex + 2a-x)

where k is real and pﬁ is the Fourier transform of p°® = p(s)exp(—2§-§).

The value of pg is determined from (C.3) by multiplying both sides with

exp(-2a+x) and then taking the Fourier transform of both sides utilizing (C.2)

and (C.4): The result is
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: LH0 500 Yty
ks (ik+2a) (gkagﬁb) (ika*a)

@]
% - - [ (ik72a) - (1k+22)

(C.5)

K, (real)

Ka * Kp

where the prime on (u® u® )' denotes that we exclude kg + kp = 0. (We
Ka Kb =

caution that the symbol a is used for both the scale length of inhomogeneity

and as an index in ky, and ask the readers indulgence for this poor notation.)
This equation together with (C.4) gives the Fourier expansion of p(S).

The Fourier expansion of <u3g§p(3)> can now be written by substitution of
(¢.2), (C.4), and (C.5) to yield

(U )1 (1kata) (1ke22)?

dkadkpdkodka ko kg ' 2ka kp

///jgﬁuzp‘3)> - 2 J CDRE (Tk+2a)-(1k+2a) .

A

x exp[-ilk+ke+kq) *x] (C.6)

= y© . i
S gkaexp(g x) as defined by (C.1),

where Wy is the vertical component of bYS and we have used the convenient
At

vector notation <wu(uu)'>:(iks + a)(ik + 2a) = <wu(ik + 2a)-(uu)'-(iky + ay

The correlation in (C.6) is evaluated by cumulant expansion
' =
<chQBd(gEaQKb) g <w5cg5a><gEdQKb>

+
S gy > gt 9 (C.7)

where Q' is the forth-order cumulant. Our basic approximation is to neglect QF
as well as all other forth-order cumulants. Substitution of (C.7) in (C.6) and

use of the quasi-homogeneous condition (B.5)--justified since ug is

statistically homogeneous =- we have i
dkadkp  Xs(ika*a):S(kp)S(ka)«(1k+22)*®
(2m)*® -k? + Lia-k + 4a®

Gi,umpls)s ~ 2 J (c.8)
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S(k) = V™ i<up (uP)*>exp (22 -x)
where the asterisk denotes the complex conjugate and we have used the vector

*
53-<BkcuKa>-

*
notation <chgKa> =

For small inhomogeneity (a<<ky), the integrand of (C.8) is expanded in

powers of a, retaining terms to first order:

2 dkgdky, ~ o
<u,utp(s)>= - |~z [a+S(kp) *XsS(ka) kpk *+ a+S(ka)kaS(kp) *XsK
2a-k? A
+ 2(a- —7JkpS(ka)ka-S(kp) -xs k72, (c.9)

where we have used the incompressibility condition (ikp+a)<S(kg)=0

[i.e.,(ika*a)-y, = 0 which follows from the Fourier transform of
Ka

V-uexp(-a-x) = 0], and the zeroth order term vanishes because it is an odd
power of k and of k. This vanishing is as should be since <u3ggg(5)> is zero
for a homogeneous turbulence (i.e., for a = 0). The integrations in (C.9) are

straight-forwardly evaluated in the small anisotropy limit when S(k,) is given

by
BE. Bic)
§(i_<_a) = 2H2(£ - —2;a) ?a", isotropic S (Ca10)
= 2 : =

where E(ka) is the scalar energy spectrum normalized by JdkaE(ka)=(3/2)v§.
Substitution of (C.10) in (C.9) allows us to readily calculate the X.X; XX,

and x,x, components of the pressure correlation. These are found to

1.3
2n.(s G e 2y2
<u2sp(s)/ax,> 15(-2’\"0 )%a

<u,u,9p(s)/ox,)

2 (3, 22
2—25'(54.’0 ) a (0.11)

<U.3U.13p(s)/3x3> = O

These components are seen to be very small.
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Before comparison of (C.11) with AC we must have the components of
<ggap(5)/8x3> to confirm (2.13). An expression for <ggap(53/ax3> is obtained in
the same manner as was done for (C.8) by substitution of the Fourier expansions

(C.2) and (C.5): The result is

() : o
ap S 2Jdlﬁad5b (l,lfa"'@.)'g(gb)é(ﬁa)'(”_{,*zé)’(fk; 'f'a-) (c.12)

W TETEDT ) ke v Hek Tt ) 1 T
Evaluation of this integral in the limits of small a and small anisotropy
yields the gaga, X,X;, and X,X, components of (C.12) as
<u,u,op(s)/ax,> % (-g— vo?)2a
(c.13)
Wy, 9p(8)/8x,> = - oo (3967)*
u,u,3p x> = - 55 (GVo7) 72
<u,u,dp(8)/ox,> = 0.
For comparison, the components of AC are also evaluated in the limit of
2 =
small anistropy to obtain, with (f.S), _
A
I
A?a = %" (%Voz)za
8, = 2 Gvon)e (C.14)
1 =g (5V07)%a .
A9, =0

Upon comparison, it is seen that the diagonal components of E(S)

(1 + TP)<ungp(5)> + <ggap(5)/ax3> are much smaller in magnitude than the
corresponding diagonal components of AC, in conformity with (2.13). (The
off-diagonalelements are all zero). Additionally, E(S) is not proportional

O g (s) /m(s) O /A0
to é since n11 /H33 * A11/A33f
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APPENDIX ?’

PART 1

To help evaluate E(U) We express p(U) as a Fourier integral, valid for
periodic boundary conditions or for an asymptotically large system:

) ' dk k,u'(k) 3Uj .
g =l J Ch: Tk T, o (kR (B1)

where uZ(E) is the Fourier transform of us(x,t), and we have limited ourselves
to a unidirectional mean flow U = [Uy(x,),0,0] which may vary only with x,.

The spatial inhomogeneity factor exp(a-x) is ignored in (D.1) since it would
only contribute to a higher than first order dependence of E(U) on a; i.e., the
triple-moment in E(U) is, itself, first order in a. Substitution of (D.1) into

(2.11), the definition of 1Y), we nave

(U) BUO J’ dK i Ekﬁi i klk3 L
E = "23;-3- W [(1+TP)<U3QUS(1§)> K2 + <QQU3(E)>?JGXP(1K_‘§)! (D.2) —_—

where the quantities u, and u without a éuper plus are not Fourier transformed.

Our goal is to determine the 13 off - diagonal element and the order of
magnitude of the diagonal elements of E(U) in the limit of small forcing, small
| (8Uy/9x,) | and | 365/8%; |, and small anisotropy. Each element is considered

separately: H%%)’ H%?) and Hég), in that order

The 13 component is expressed by (D.2) as

() o [ = + s + Kiks
—_— o — 2 _ —
H13 TS o’ [2<udus(k)> kz * 4<uu,ui(k)> K2 1. (D.3)

To evaluate this integral we need the triple-moments <u?u}(k)> and <u,u,u*(k)>;
later in this appendix we will also need <ufui(k)>. These moments can be
obtained with the aid (2.10). To lowest order in 3Uy/dx, and/or g/8y --

and neglect of g(“) -- (2.10) gives us
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3<usui> = - 7 A9
kL (D.4)
3y - - 0
3Kuz> TOA33
(U) 3y,
2 = i (0] 3y 220
3Ku2u,> TO(A13 + H13 + <ud axa). (D.5)

The first order terms <u3>dUy/sx, and ngg) are included in (D.5) since A9is,
itself, first order; i.e., A?3 « <u,uy> « 3Uy/dx,. The g/0y terms have been
neglected in (D.5) as second order in the forcing since these terms have the
form <u,u,8>g/0, and <u,u,6> is of order in 3Uy/dx,; Dy virtue of the fact it

(8)

contains u,. The H%g) and Hl3 are also second order and therefore neglected.

What is required for (D.3) are the Fourier components <USUju§(E)> where
j'=1,3. These components can be derived in a formal procedure by taking the
Fourier transformof (2.3) and substituting it for ui(k) in <u3uju§(g)> -~ a
lengthy procedure.Instead, we use a simpler, but more heuristic, method based
on (D.4) and (D.5) which gives the same result. In this method, Fourier
expansions of A%B and A?3 in the right side of (D.4) are written, after
substitution of our inhomogeneity relation 3<uu>/3x, = 2a<uu> into (2.8), as

follows:

]
433

J dk

= e 2 + ike

= 3a | T v ><uju3(g)>exp(1g X) (D.6)
(where <u?> and uj are not Fourier expanded). In addition, in the left side
of (D.4) is Fourier expanded as <u,uu> = (2I)7* fdk<uuu3(k)>exp(ik-x). The

Fourier components of each side of (D.U4) are then equated to yield

3Kuzut(k)> - T AT(K)

(D.T)

3Kudui(k)>

2 T0A§3(1'§_) ’
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where

AT (k) 2a<u?><uui(k)> + lYacu,u;><u,ui(k)>,

(D.8)
A* (k)

6a<u§><uju;(5)>.

It may be heuristic to equate the Fourier components of both sides of (D.4),

but we have also derived the same (D.7) in more rigorous, and lengthy fashion.

Similarly, Fourier expansion of both sides of (D.5), with use of (D.3) for H(U)

12"
we have
- 2k2 Kk
3Kuuuik)> = —toAta (k) - greludui()> (4 - 1) + Kuuup> =], (0.9

Eqn's. (D.7) and (D.8) give <uZui(k)> and <uju3(k)> in terms of second-moments.

To obtain <u,u,uf(k)> in terms of second-moments, (D.7) is substituted in (D.9)

to yield
18U X3
3<U.3U1U43-(1‘_(')> = _TO[ATS(E) ¥ ?TOE}E? A-;a [_kT = 1]]
ol &
x(1 - % TO'%%? E&éi] ’ (D.10)

Evaluation of T{J) can now be made by substitution of (D.7) and (D.10) in

(D.3) which, to lowest order in 3Ugy/9dx,;, yields

dk 2k? 2k? K.k
(U) _ g [ T SRR S| S P
Tis™ = T %x, (211)“[3k2 "9 T Bx, (e - 1 =) A5 )
k. k, ?
U, (U <153
Bttt o H e AR, +
1,5 (3 ) AL (D.11)

The quantity A*,(k) is expressed in terms of spectra as

+ = 2 ; 12
M) = 6acul> S y3(k) (D.12)
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This expression obtained from (D.8), (B.5) and use of
ujug(g)> = (EH)_3 Jdga <u3(§a)u§(g)>exp(—ig-§) = Sj3(K)eXP("iK'§)1

For sjg(g) we use the isotropic expression (C.10). Finally, by substitution of
(D.12) and (C.10), the integrations in (D.11) are readily performed to yield

%%Q-(6a<u§> 2 <u2>, (D.13)
3

HELEI) = 15

o}

where we used JdKE(k) = (3/2)<u?> near isotropy. This relation 1s expressed

in terms of A9, by substitution of (2.8):

(W) . 2 _ g o
I:" = 15 TO X, AY,, (D.14)

the desired result. This expression gives n{Q) in terms of second-moments to

first order in 3Uy/dx; and 30y/9x, for small anisotropy. To judge the
importance of this term we note that its magnitude is less than that of AQ,,
the principal term of the 13 component of (2.15), but only by a factor of about
1/3 to 1/2; i.e., for the magnitude of A9, = 6a<ui><u,u,> we use <uu;> -

- (15/3) (3Up/3%5)<u3> (e.g., Tennekes and Lumley, 1972) to get A9, ~ -(1/3)

to(3Ug/3%,)As.
In comparison, TM{Y) is not negligible.

As for the element T{U), its order of magnitude is estimated by

substitution of (D.7) and (D.10) into the 11 component of (D.2)

2t U dk T U k?

(U) - 0 0 J = [rE o) + _-_!‘-

My = =525 )y (AL« 32 57 (5.00) g
® AT:L(I'_(_)_kz ]' (D.15)
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For asympotically small isotropy the AT, integral term is asumptotically small
since, with (D.12) and (C.10), 4% « S,,(k) and /dkS,,(k)k?*/k? is zero when the
isotropic S,, is used. Similarly, for the A%, integral term. The remaining
A%, term does not vanish at isotropy, but is second order in t5dUy/08X,.

Therefore

HE?) = o[(roauo/axa)Z], (D.16)

in the limit of small anisotropy and small (tgdUp/9%;)2.
The last element we consider is Hgg). It is given by substitution of
(D.7) into (D.2)

3, J dk KyKs

_Oo | = __at e
= A} (k) = - (D.17)

T EE

I35

This integral, too, is small near isotropy since AY, = S;4(k). However, we can
say that fdkS,,(k)k,k;/k? is of order dUy/3xs since a small shear magnitude
will cause a deviation from isotropy (proportional to the shear). Therefore

1Y) - o[ (rpou /2x,)2], (D.18)

in our limit of weak shear and small anisotropy.
To end this part of the appendix, we note that (D.14), (D.16) and (D.18)

can be combined in the tensorial form

w) _2 & T
77 = 5 TAQ(W + W) + 6, (D.19)

=

where Sy denotes terms of order (3Up/3x;)* and (3Up/3x%;) (3Cy/3%,) neglected in
(D.4) and other places, EQT denotes the transpose of VU, we have used ng) =
1{Y). The form used in (2.14') is obtained by substitution of (D.4) into

(D.19):
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1 - - 2ap @ wh s, (D.20)

as we set out to prove.

PART 2

To derive (2.23) we substitute (D.1) into <g§p(U)8> and obtain

an J dk kk

(1+Tr)<ng(U)CD =2 TE%TT <geu+(g)>-§;1 exp(ik-x). (D.21)

To lowest order in mean gradients, <usfu,> is given by (2.26) as
J

(8)

<ujeu3> = —(10/3)A33 y (D.22)

(8)
13

Fourier expand both sides of (D.22) and heuristically equate Fourier components

Substitution of (2.19) for A,.’ and use of aduu>/ox, = 2a<uw>, we afterwards

to obtain

<ujeu§(g)> = -(2/3)ato[2<uae><uju§(g)> + <6uj><u3u§(g)]. (D.23)

This could be established by a more rigorous but much more complex derivation.
Substitution of (D.23) and
<uju§(g)> = 6j3(g)exp(—ig-§) (D.24)

into the 13 component of (D.21) we have

(u) vy _ dk k.Ks
9p 3p = lat, 3U J =
<5(111 9%, + U, 3%, )) 3 L —gi? @)—3 [2(1138)513([() —'—"'—kz
+ <u16>833(k) v + 3<u38>833(k) e Ja (D.25)

In the asymptotic limit of small anisotropy, the integral is readily evaluated

to be
(U) (U) 18]
% ., ., 8 'y, _ 4 __ "o R
<8(u, X, + U, 3, )> = ATy 3%, <u,8><u?>

(D.26)
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8X3 3 ]

Uil

the desired expression for 13 element.
The 11 element of (D.21) is evaluated by substitution of (D.23) and

(D.24):

() lat ol dk k2
o, BT o [ & . K
2<u, 5 6> T GE [<u38>s13(5) <ule>833(g)] T . (D.27)

The second term in the integrand is second order since <u,8> is of the order
(8Uo/93x3)(869/8%,) in the asymptotic limits of small anisotropy and small mean
gradients. The first term in the integrand integrates to zero near isotropy

since S13kf is an odd function of k, and kj;.

Similarly, the 33 component of <g§p(U)e> is also found to be
asymptotically small in the limit of small anisotropy and small mean gradients.
Hence, in those limits, the diagonal elements of <g§p(U)8> are negligible and,
we have seen, the off-diagonal 13 element is given by (D.26). These diagonal
and off-diagonal elements can be combined in the tensorial form

ey - - 2 cuzex(yy + 1D, (D.28)

(1 + T,)<u¥p :

for our case of VU = %,X,3Uy/3x,. This equation is (2.23) as we wished to prove.

To derive (2.23'), (D.1) is substituted into the Fourier expansion of

W) U, J dk . Kk,
2 — — 2 i .
<Vpl¥/62> = -2 %, | DT <02u3(k)> 2 exp(ikex). (D.29)

The integral is evaluated by use of (2.27) in the limit of small mean

gradients:

3<us0%> = -1 A£92>. (D.30)

52



As for (D.7), the Fourier expansions of both sides of (D.30) combined with use

of 9<u,8>/9x, = 2acu,6> yields

<82ut(k)> = - %-ato[<82><u3u§(g)> + 2<u,6><6ui(k)>]. (D.31)

Substitution of (D.31) and (D.24) in (D.29) we have

Hat 8V, J dk KK,
(

p Wz - 30 5% | TamyT [€07833(K) + 2,05 (0] 47, (D.32)

where R,;,(k) = <E)"(I‘<_)u*3’(b_<_)>‘J‘1 and 6*(k) is the Fourier transform of 8(x).

The integration can be done in the small anisotropy limit and use of R,,(k) -

S;33(k) <bug>/<u3> in that limit. The result is

(U) bat U
ap 02> = (—20 (s - G —— y )
< ij > = 3 }'5;; (5 <B3i><u?> + 5 <u,0> )aij’ (D.32)

where §jj is the Kronecker delta.
After substitution of (2.20), this equation can be written in the vector

form

apWex = - 2 coupety,

which is (2.23").
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APPENDIX E |-

PART 1

The purpose of this appendix is to derive (2.16), (2.17) and (2.18). To
derive (2.16) we substitute into <uu®> an expression for 6 obtained from the

fluctuating part of the thermodynamic equation. That equation is

2 - oV = ~(u-78)" - u-Ve, - U8, (E.1)
where (u-V6)' = u-¥6 - <u-V6>, o is the thermal conductivity, and the
conductivity term has been placed on the left side for later convenience.
Eq'n. (E.1) is formally integrated in the same way as was the Navier-Stokes
equation in Sec. 2 with the result

t
8(t) = G (t)e(0) - j dthU(t—tl)[(h-ge)'+g-geo+g-ge]t (E.2)
0 1

1

Gc(t) exp[-(t-t,)vv2]

where the subscript t, in the integrand is to remind us that the terms in
square brackets are all to be evaluated at time t,; e.g., u = u(t,).
Substitution of (E.2) into <uuf> we have

:
s> = (L.V.), - j dt,<u(6)u(t)G [(u-76)" - ue¥dy + U-T6le,  (E.3)
o}

where (I.V.) denotes the initial value term <u(t)u(t)G (£)6(0)>. A needed
additional expression for <uué> is obtained by substitution of (2.3) for

u in <uué> to obtain

t Yp go
<uud> = (I.V.), - J dt,<u(t)e(t)G [u-Vu)' + — + ueVU+U-Vu + fr']t >
- o t "o ) 1)
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where (I.V,), = <g(t)8(t)GU(t)g(O)>. We next add (E.4) and the transpose of

(E.4) to (E.3). The result is

Yp(t,;)

t
3<uud> = I.V. - J dt,[B(t-t,) + (1 + TP){<g(t)9(t)Gv(t—tl)
o] o}

>

+<u(t)e(t)G (t-t,)e(t,) g}-+ <u(t)e(t)G (t-t,)u(t)>-VU}
0 v = -

+ <u(t)u(t)e (t-t,)u(t,)>- W] (E.5)

B(t-t,) = (1 + Tp)<u(t)s(t), (t-t,)u(t,)-Tult,)1">

+ <u(t)ul(t)G (t-t,)lult,)-ve(t,)I"> (E.5)

where I.V. = (I.V.)1 + (1 + Tp)(I.V.), is henceforth ignored as small for
t > 15 and, as for (2.5), the terms containing U-V collectively vanish since

their sum in (E.5) is of the form_UsV<uuG,©> when wk3 << kqvg.

The quantity Jdtlg(t-tl) is evaluated in the same manner as the evaluation

of Jdt,é(t—tl) in App. B; i.e., cunulant expansion of the fourth-moments

in B(t-t,) in terms of second-moments, followed by time integration of second-
moments as in (B.9) but with the velocity spectrum S(kp;t,t,) replaced by the

cross-spectrum <g§b(t)9kb(t1)>v-1. A simplifying approximation made is

0 =v. The result of this evaluation of Q is

t 5 t
J dt ,B(t-t,) = toA" + J dt,Q
o h o

(®)(¢-t)) (E.6)

where 58 is defined by (2.19) and g(e)(t—tz) is defined in the paragraph
following(2.21).
The remaining time integrations in (E.5) can all be expressed as

vp(t,) Yp(t)
> = 1,<u(t)e(t)

£
[ dt,<u(£)8(t)G, (t-t,)
(]

> (E.7)
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t
[t )66 (e-,00(6,)> = Tacult)o=(6)> (E.8)
e}

t
f de<ut)u(e)G (t-t)ult,)> = ty<ult)ult)ult)> (E.9)
(o]

where 1,, T,, T, are to be determined. This determination is similar to the
evaluation of Jdtlg and Jdt1<u3gGUu> in App. B; i.e., we express the integrands
in terms of (two-time) fourth-moments, expand the fourth-moments in terms of
products of second-moments S(k;t,t,) and fourth-cumulants, neglect the
fourth-cumulants,and, finally, evaluate the time integrals by use of (B.8).
The result is given by

£y €< T

T = 2 i=1,2,3) (E.10)
Tos £ T,

Finally, substitution of (E.6) to (E.10) in (E.5) yields (2.16) as we set
out to prove.

As for (2.17) or (2.18) their derivations are similar to that of (2.16),
i.e., for (2.17) we substitute (E.2) for 6 into <u86> followed by sub-
stitution of (2.3) for u and proceed with same steps as (E.3) to (E.10) but
with u(t) replaced by 6(t) in the appropriate places. Similarly for (2.18),

except that we begin with substitution of (E.2) into <83>.

PART 2
To derive (2.22), we substitute (C.5) for p(S) into the Fourier expansion

of <uvp(8)e> to obtain

T™Saefq 3 2
(s) J dkadkpdkodig <SkoRigBealie,) ¢ (Tka + @)(1k + 22)
wipr e = - M (ik + 2a)-(ik * 2a)
x exp [-i(k + Kk + k,)x], (E.11)
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where k = kg + kp. Upon comparison, it can be seen that the right side of

(E.11) is exactly the same as the right side of (C.6) when w, is replaced by

Ke

0 For this reason, (E.11) is converted to (C.9) when u, in the left side of

Ke'

(C.9) is replaced by 0 and x;°S(kp) in the right side is replaced by x,-R(kp),

where R is defined by R(kp) = V7!<Z,6, u¥ > (by its definition R is obtained by

Kb Kb

- -

replacing gkb in §(gb) by gaekb). With these replacements, the elements of (E.11)

are the same as (C.11) with u; on the left side of (C.11) replaced by © and
(vé) on the right side replaced by <6u,> -- assuming near isotropy for R as
well as S to derive (C.11). As a result, the 33, 11 and 13 components of (E.11)

are implied by (C.11) to be as follows:

(s) I B g
<u,03p " /3xy> = T (2 vo)(2 <u,8>)a

(s) .. 2 43 3
<9U.13p /3X1> = TB (E VS)(§<U38>8 (E.12)
ou,3p /ax> = 0.

These relations can be combined in the tensor form of (2.22)

(1 + tr)<ggp(s)e> - g-g(e), (near isotropy) (E.13)

where fjj are numerical constants determined by (E.12).

The derivation of (2.22') is similar to the derivation of (E.13). Thus,
we substitute (C.5) for p(s) into the Fourier expansion of <Ep(5)92> and note
that it would be the same as the Fourier expansion of the x, component of

<g§p(5)u3> given by (C.6) if w were replaced by 8, and B, »

and %..u
Ka =2 ~Kb ta “b

respectively.
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Therefore, <Yp(5)82> is given by the x,; component of (C.9) with u,u, on the left

side replaced by @2 and gz-gg-ga on right side replaced by X,+SR+X;, where R is

defined after (E.11).
It follows that the elements of <Ep(5)82> are given by (C.11) with u,

appropriately replaced by 0. These elements are

(s)

<0%3p " 3x > (

oo

%ﬁ <u,6>%a
(E.14)

(s)

<023p "’ 9x,>

I
o

in the limit of small anisotropy. This expression can be written in the form

~2
given by (2.22'), since, for isotropy, <u?><@?> ~ <u,0>? and AEO ! = 6<u,0>2a,

using 9<u,0>3x, = 2a<u,0>. The essential point of (2.22') and (E.14) is that

<92§p(5)> is negligibly small.
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