Appendix A

The coefficients Fg(t), F11(t), F12(t), F21(t) and Fy2(t) in (3.29) and (3.30) are given
by

Fq(t) = <$ Z (1 — sz) ezakt>|X| ; (Al)

k=1

1 1 2

+e72 (X% + Xp° X5%) Xy ?
+2e(@me)i(1 _ X,2) X,2 X2

+ ez(al_az)t(X22 - X32X12)X22] > ’ (A.Z}
|X|=1

1 1 o
Fiaft) = 0] <W (122:3) [(1 - XY (3 -1X1%)Xa? - (5 — 7X;2) X, 2 X2

+e 30t (X, % + 7X,2 X5%) X, 2
+ 2e(°" _asﬁ(l = 7X12)X22X32

+ e:',(ah_':"3}'1:(4)(3:z — ng - 7X32X12)X22]> ’ (A.3)
X1

_ 1 1 Lo w23 sa 2 2y 2
le(t)"_m<4l)2 (1Zz:3)[2(1 X2 X+ (1 + X1 3) X2 X

s 2e(a1-ag)t(1 s XIZ)X12X22
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- e2(az—az)t(X32 — X12X22)X22]> ’ (A"4)
| X]

=1

1 1
Fas(t) = — 1 <8}_)2 > [-(1 - X?) (3 - 7X1%) X1 — 31t (5 — 7X,%) X, % X2
— 14elm—aali(y _ x,%) x,2x,2

— etler=aadt(gx,? _ x,2 7X12X22)X22]> ,  (A5)
| X]=1

where

D= Z e~ 2okt sz (Aﬁ)
k=1

and 2(1,2,3) means that the summation should be carried out over all permutations of (1,

2,.8). ( >i X|=1 denotes an average over a unit sphere in X-space.
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Appendix B

As shown in §4.1, the rate-of-strain tensor & can in general be divided into its irrota-
tional and rotational components;

(B.1)

where a(?) is symmetric and traceless, and a(®) is antisymmetric, i.e.

0iD =i, 0@ =0 and ay® = _q,®),

(B.2)
Under the assumption that there is no correlation between a”) amd aF) e

(a,'j('r) akz(R)) =0 (B.3)

the ensemble averages of the second order moments of & is expressed as the sum of those
of the two components as

(a:‘jakt) — (aij U)akl(n) + (a;j(R)akz(R:'). (B,4]

For a (pseudo-) isotropic turbulence the second order moments of any tensor Tj; can
in general be written as

(TijTr) = A6ijbx1 + B 6:ixbj1 + C 6165, (B.5)
where A, B and C are constants.

It follows from (B.2) and (B.5) that

3 3
(ai'mﬂ:k:m) =-F 002 6;;61 + e a0®8ix8i1 + — o286
and

(B.6)
0,2
(e P ®)) = TO (6651 — Gubjk), (B.7)
where g(f ) and g(R) have been normalized respectively as
(e P gy ) = 3002 (B-8)
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(aab(R] aab(R)) = 202,2. (B.9)

Substitution of (B.6) and (B.7) into (B.4) then gives us that

1 3 % 3 2%
(aijor) = ~ 002 6:56k1 + (E}- ao? + —;-) 8ikb51 + (-ﬁ ap? — %) 6a6;x. (B.10)

If the turbulence is isotropic in the strict sense, or if it has no helicity, we have the

relation
(05112> = %<a212> (B.11)
(see Batchelor 1953) or, from (B.10),
2
?20_2 = DTO (B.12)
Then we find |
(esjem) = "% ao® (86 — 461851 + 6abj). (B.13)

Incidentally in this case it is seen from (B.8), (B.9) and (B.12) that the norms of the
irrotational and rotational components of & are equal;
(2P an®) = (P ap®) = 2 (aj0u). (B.14)

For the reference to §5.3 we give here (without proof) the explicit form of the second
order moments of an axisymmetric incompressible straining tensor a. If we choose the
symmetric axis in the direction of the z3 axis, the second order moments of & is shown to

be written as
(ewjen) = (3(eaa®) — (@11?)) 6i6m + (@12?) 6y
+(2(e11®) = (a12”) — 3 (@ss”)) budji
+ ((a11®) — (@a3?)) (6:5 X621 + i)
+ ((a13ea1) — 2(@11®) + (@12®) + 3(@as?)) (8arjhe + 6xdid;)
+ ((e1a®) — (a12®)) Sixdidi + ((a1®) — (@12%)) 8 hhe
+ (({@11®) + 2 (@zs®) — 2 ez ) — (@a1?) — (@13?)) AidjAe )y, (B.15)
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where
A; = 6;3 (B.16)

is the unit vector in the direction of the zs-axis.

Appendix C

The initial development of the velocity moment tensor B;;(t) of a small-scale isotropic
turbulence distorted by an anisotropic strain field @ with zero mean is calculated as follows.
The velocity moment tensor is calculated by integrating the energy spectrum tensor

(2.27) with respect to x:

1 s
B (t) = f < (-5(-5-(5,-1' - 5535]'5) — X;{f} 59_5) Tachd> .4(x,0) dk. (C.l}

In order fo examine the small time behaviour of B;;(t), we first expand the deformation

_tensor (2.18b) in the power series of ¢ as
Sij = bij + aijt + % (&) 804 (C.2)
the inverse of which is
Sii(t) = 8 — agt + 5 () 22 4 -+ (c3)

Then the deformation of the wavenumber x(t) is written in terms of « as

~ 1
Xi = KpSpi = Ki — Kpotpit + 5 .'c:l,,(gz)pt.t2 — e (C.4)
Thence,
1 1 2KpKq KpKg 2
‘x_z = ? [1 + 52 t— 52 (g )pq + apraqr
4KyKs 2
+?apqar3 i el (0'5)
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and

XiXe _ 1 e 4KiKgKpkq _ Mo

* %Ei’“? (gz),,k + %nkfcp(gz)p‘. + KpkqQpiQgk
a 45‘?{::‘;—"&? QpqQrk — 4__"9“:::?'“ gty
- Z_E%ﬁg ((g‘z)pq T a’praqr)
n 12&;!%:2&9'&,&3 apqara] 2 4. }

XiXk 1 2K;KpKpK
NS o —7{'5;"% o (—'-iiapq — KiKpQpk — fcklcpapi) ti+-- '}, (C.6)

(€1

Substituting (C.6) into the the definition in (2.15a), the viscous term being omitted,

we obtain the power series of the deformation tensor for the rate of change of vorticity as

ﬁfj(t) — ﬁij(o} + 5'.-7.(1) t4-. .

where the coefficients are

KiKg

Bii?) = aji + = (axs — @jx),

() _ 2K;KkKpKq _ Kikp _ Kgkp N .
ﬁ:g == _n':i_"“apq 2 Cpk n_2ap‘ (a”.? — k)’

Then the vorticity deformation tensor (2.19a) can be expanded as

()

t t -tl.
£+[o g(t)dt +/0 dtlfo dtzg(gl).g(tz)+,,_

1
+£(1)t _|_ 5;’(2)t2 + s

L

where the coefficients are

(C8)

(C.92)

(C.ob)

(C.10)

(C.11a)

(C.11b)



By substituting into the small time expansions of x(t) and I(t), (C.4) and (C.10), and

the relation between the energy and the vorticity spectrum tensors for isotropic turbulence,

ngj(lﬁ‘., 0) = x2 @,'J;(E,O), (0.12)

we obtain

KiKi
Bij -/’[Ezjﬁcd_ 3 26 Ocq — 5:c63d

2
dRyK oK Katpgay,  Kpke((2?) pq T Cprogr)
e 3 1 - 5 (61'_1'6.::.’. - 6:':5_7'(1)
K K
— 2
_ [ 12KikiKpKqKrKsOpgtrs 2’“:"‘:“‘?’“&1((% ) pg t Cpr0gr)
PG P

_ 4KpKq0pg (rc,-n,a,.,- + EJ‘K,,-CI:,{)
P

Rsfcp(_ )m + Eplapitys "’J""P(_ ) )
=+ ocd

2K2 K2 2x2

2K, K0 1 1 1
23 PK:Q’ = (Td(c)'s‘.‘l' i+ T( )6 Ti(c )63-‘1 + TJ-(;)&':C)

4R KK KgOL KiKpOlps KiKpQlns
_ 3 %plg%pq  KikpQpj  KjKpQyp; (1) (1)
( K4 K2 K2 (Tdc +Tcd )

Kiky

+ (8~ 5) (12 + 19 + 101)
— 64T\ — 6:. T3 — T(I)T{1)> +] ®.4(x, 0) dx. (C.13)

Note that terms proportional to ¢, which are linear in @, are dropped out after the ensemble
average because (Q =0.
Substituting the coefficients of T, (C.11) with (C.9), into (C.13) and using identities
for the weighted integrals of &(x,0) for isotropic turbulence, (D.2) ~ (D.5), we obtain
2 2
Bi;(t) = = / E(k,o)dk{&,-,— + ﬁ[S(gz)Mﬁej + 8 aapap ) 6i; — 5(e*),;

(C.14)
= 5(a’) ; — 12(aaia;) + 2{0uaa)] }
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Appendix D

We give here several identities for the weighted integrals for isotropic turbulence.

For isotropic turbulence the energy spectral tensor ®;;(k) is expressed in terms of a

single scalar function E(x) as

oo -2

(£26:5 — kins;),

where & = |k|.

Then it is easy to show the following identies for the weighted integrals:

[ outera= 2 [ 5092

K 1
/ L:z 2 Beq(K) d = 5 (4 8as6ca — bacbpa — 8aabyc) / E(k) dxk,

K K 1
f 'a—ngf—i Pef(k)de = —= [6(8256cd + bacbiq + 8aabsc) bes
K 105 g
= babbeebaf — Sabbcpbae — Bacbpebay
— 8aclf8de — 6aabbebef — 8adbpfbee
== Saeabcgdf = Saefsbdacf - Eae‘sbfacd

~ ba70bcbae — Ba16abce — 6a7bpebe] / E(x) dx,

/‘nanbncndngnf Byl we

16 6ab6cd5ef + 5ac55d53_f 85 6a.d6bc6ef

2
105
e 6a.b‘5ce6df + 6ab6cf6de + gacébeadf
+ 8acbbfde + 8aabpebies + 8adbpbiee

+ ‘saeabc‘sdf + 6ae‘sbd6cf + 5a.efsbf6cd

+ 6a.f65c6de + éafé-bd&ce + 6sf66e5cd] / E(K) dk.
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Appendix E

Here we describe a detailed calculation for the initial evolution of the vorticity moment
tensor W;;(t) distorted by an isotropic random rotational straining motion and by an
irrotational mean straining motion.

Let é“ be the sum of a large-scale irrotational mean strain A and a large-scale random
rotational strain a:

A=

[

+ a. (E.1)

We choose a co-ordinate system in which 4 is diagonalized, so that
Ay =AD g (E.2)
The deformation tensor (2.18b) is now written as
t

st =exp| [ 4% dt | = expla) (E3)

= 0 = B
which is expanded for small ¢ as

* ! *2
Sij =8+ Afjt+ 5 (4"%) ;8% + - (E.4)

Its inverse is

Sfj(t) = 61::' b A"jt + E (é* )':J-tz + Ry (E.5)
which gives the deformation of the wavenumber x(t) in terms of & as

o * 1 *2 2
Xi = KpSpi = Ki — mpApit + Sy (A7) 47— (E.6)
Thence,
Xixe _ 1) 2KiKkKpKq A% — i A A% )¢
2 g2 | PR T3 Apg T KikpApk — KiKp Ay

1 " 1 % -
* {gni"p(é 2);,:: F §'°’='€P@ 2)ps + KpkgApiAgr
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Zn,fcpnqn,. A* _ an;cpnqn, A* A*.
IC rk lﬁ Pg--re

- ( (&%), + A;,A:;,)

4KiKKKpKqK Ky

+ o A;QA:::] s } (E.7)

From the definition in (2.15a), the viscous term being omitted, the deformation tensor

for the rate of change of vorticity is

Bii(t) = A5 + T3 (eks — o). (E.5)

This can be expanded as
Bii(t) = B + 8; Ve + %ﬁij(z) t2 4., (E.9)

where the coefficients are
Bis® = A5+ =5 (o = ), (E102)
By = [————2 A= "~ A;,-] (ars — ), (B.10)

(2) _ ) Kikp *2 I‘Ck!ﬁp 4*2 an.'cq
JB:J = { (_ )pk + (—— )pg T A‘ qk
4n,mpnqm,

*
A rk_

2n;nkﬁ:pnq 2 S
- K4 ('é— )pq + AP"A'T"

SE;}CkRPK.qK.,-Ea

©6

A;qA;a} (akj- - Q:J'k) . (E.IOC)
Thence the vorticity deformation tensor

I(t) =exp[ ! B(#) dt'] (E.11)
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can be expanded as

t + t
I(t) = I+ g(t’) dt’ +/0 dtI/(; dt, _E_(tl) 'g(tz)
t ty to
+/0 dt]_./o dtz 0 dt3£(t1) .£(t2) 'g(t3) ks

1 1
=I+7Mt+ FL 4 S L+, (E.12)

where the coefficients are

%.(1) _ Q(O)' (E.132)
7 = 2(1) 2 2(0)2, (E.13b)
T = 2(2) + £(°’ ' ﬁm +2 2(1) '2(0) + E(O)a- (E.13¢)

By substituting the small time expansion of I(t), (E.12), into the definition of the

vorticity moment tensor, (6.3), we obtain

Wi(t) = / (5i95:'q + (5:'?113'9'(1) + T3, 6; )t
2' (g,;pTJq(?) 32T, (UT (1) 4 T@@)gjq)
4. i (5 Tjq (3 4 3T,-p(1)qu(2) + 33}})(2)3}9‘(1) T Tip(a)ajq) 3
o ) Bpq(k,0) dr. (E.14)

For isotropic Gaussian straining, satisfying (6.4) and (B.10), the moments of the

coefficients of E are calculated to be

< (0)> = AW)s,;, (E.15a)
(8"} = —-9025,-,- +200° 5L, (E.15b)
< (2)) =§ [A(‘ — (749 4+ 64) '“:"‘*"'

— Al Bpfp rcpn:p ( 5i; — 165;:«:;-)]’ (E.15¢)

K2 K2
<(£(0)2);‘j> = (AD)%5; + a6, + —z-ﬂoz % (E.15d)
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3 . o
((2(0) )ﬁ) = (A9)%;; + f—;-aozA(‘)ég,-
2 - _ p—
+300° 5 408, + (40 4 40) B8

KpK 2K:K;
+ A®) :P(é}'j'— ’:; J)], (E.15¢)

2
_(0) .(0)>=A(s’) g, 5. 2(_1 5 8
<ﬁtp Biq AV bipbiq + o 35=p51q + E‘Su bpq + Ia‘siq53'p)
2 2 1 1 KiK
* 590 (E‘si.f‘qu - '2'559'53'13 + ‘;g_q bip
KiK 2KiK; KpK
+ ;2” big — — ;j ‘f), (E.15f)

<(E(1) . ﬁ{O))£j> = %_002 [._A(i),g‘.j — (249 — 341)) f;_?_

KpKpKiK:
+240) -2_:4_4)], (E.15g)

WE® A7) )=

(5ip(0)5jq(13> =

002|405, + (440 — 40)) =2, (E.15h)

K

Ll o

2,° ( ADgp 65, +340) T 5
E

+(49 - 40) o 5, — (4D 4 40)) e g
K2

+240 Ma ¢ +2(49) 4 4@) "‘""‘J’Cp’“q

K

KiK;KyKgK
—~g Al 555 P ‘””’), (E.15)

( B:,©@ (2(0)2)39 = AD (40)) 25,6,
+ ap [(A(‘) - —A(-’)) Sipbiq + (A(") 3 A(P)) 5604
\ 4 % (4@ + A0) a,qup]
+ -z-noz (% (49 + 4®) 6355, - %(A(") +49) 685,
+A® ’%’:l 8ip + (AU) - A(‘?)) %f—‘f §ip
+ (40 + A0) 2 b

- Z(A(J') + A(e))

KiKjKpKq
4

)

K
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Thence the moments of the coefficients of T are given in terms of ag?, 252 and the principal

values of the mean straining matrix A®) :

<T,—,-(1)) = (ﬁ,-j(“)) = AWs,;, (E.162)
(1) = (3s) (&), )
= (AD)25; + 0?65 — gnoz (85 - 4’::’3' D (E.16b)
(75 = (8s2) + ((29-82) ) +2( (- 87) ) + (&)
= (49)°5; + 2 ag?40s;,
= gno ( A8 +640 530 1846 DEEEN), (B160)

(ﬂp(”f_}}.q(”) - ( g‘.p(o)ﬁjq(m)
= A AW, 5. + a02(—15,p5,q o 685 + 1305“5”)
& gnoz ( %5,—1-6” - Ea,-qa,-p + e g,
+ 5030 gy, — 20N ”Eq)a (E.16)
(T‘.P(l)qu@)) - ( Bip® ﬂj.q(n) + ( B, (g(@ﬁjq)
= 4O (4W)?s, 5, |
+ o[ (40 - -A(J)) fe B ( A9 + 4®) 655,

+ = (A(‘) +49)) 8igb)

2 1 - 1 .
4 5302 [5 (A(S) + A(P)) 6:i6pq — E(A(%) A(J)) biqbip

- A(t)a,pé'_,q + 44 Eifq "‘q bip + (A(J) + A(q)) Kifq 8ip
K2

+ (A9 — 4(e)) “J"‘P big + (A() A(J)) 'G::J 5,

+24™ Mﬁ ¢ +2(4P — AW) ""'t""J’Cp"q

(E.16¢)

K6
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Substituting into (E.14) these expressions and the isotropic form of the vorticity spec-
tral tensor,
E(x,0)
47k2

| 12;(x,0) = (r%6:5 — Kikj), (E.17)

and using the identities for the weighted integrals for isotropic turbulence (D.2) ~ (D.5),
we finally obtain the expression (6.5).
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