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Appendix A. Unbounded parabolic profile.

Consider the basic velocity
U(y) = QU;yz for -= <y < =, _ (Al)
where U; is some constant. Thus we seek to solve

QUly2 - c) (¢" - a%¢) - (U1 - )¢ = O (42)

and

¢(y).+ 0 as Y + 4o, (A3)

(Equation (A2) énd-condition (3) imply that ¢ vanishes at infinity.)
It may be seen that this problem is symmetric in y ‘and that
no eigenvalue c belongs-to more than one'independent eigenfunction
.¢; it follows.that each éigenfunction is either even or odd; |
ftherefore the boundary conditions (A3) may conveniently be replaced

" g

¢(y) >~ 0 as y - & (A4)
and éithér
$'(0) =0 or $(0) =0 (A5)
respectively.
Note that U" - g = U;;l — B 1is constant and therefore does

not change sign in the flow; therefore the flow is stable. It
follows, by elimination of the possible classes of modes, that '
if U; < 0 then all bound states belong to the continuum of
singular stable modes. 1If, however, UI;; > 0 then there may

exist modified Rossby waves with ¢ < 0. To study these modes
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it is helpful to define

Y =7 (-U;/ZC)}', k = ¢ (-202(:/“;:;) > 0, (AB)
and
U :-'»/25/Um” -9/4 or v =94 - 287Um”. '(A?)

Then the problem may be rewritten without approximation as

il 4 H4E ) ¢4 =0, (A8)
bry ( Y2 + 1 '
" where 5

¢y =0 or ¢ =0 at Y=0 (49)

and

:¢(Y) +0 as Y + =, (A10)

(We use subscripts now to denote derivatives.)

Further, it can be shown £hat if ¢ kis;éefined-by
o(Y) = Jﬁz_I_T'w(Y) then ¢ satisfies an oblate spheroidal wave
equation. Unfortunately little seems to be known about its
eigenvalues with the present boundary conditicns, in spite of

its having a name, so we must examine its spectrum ourselves.



Régarding (A8)-(Al0) as a Sturm-Liouville problem to determine
py?2 for any given value of k% > 0, one may see that p2, and therefore
B, decreases monotonely from infinity as k dec?eases from
infinity. For use in 8, we now seek the behaviour of B as
k2 4 0. One can see.at once that if 0 > } + p2 =} — 2 then
all solutions of equation (A8) are exponential in character and
therefore none can satisfy boundary condition (A9) as well as
"(Ale). So a lower bound of y? for the existence of eigensolutions
is =l. To establish that the greatest lower bound is in fact zero,
‘we make the ansatz that k + O more rapidly than any poﬁer of
as p.+4 0. for each value of n, and will justify the ansatz
plausibly below by constructing the asymptotic solution by the
method of matched asymptotic éxpansions.

To trf to solve the problem by regular—perturbation theory,
one ﬁoﬁld expand the solution of equation (A8) in powers of ﬁz
for small ﬁ. However, one can see at once that this expansion
s not valid uniformly at infinity, because equation (A8) and

boundary condition (A10) give

¢ (Y) ~ constant x e"kY as Y 4 oo, (Al11)

This suggests the use of a power series in p? to satisfy
equation (A8) and boundary condition (49) at Y = 0 as an
inner approximation, together with an outer approximation in

terms of the outer variable

n = kY = J(—ZaZCFUm”)Y = ay. (A12)

In terms of this transformed independent variable, equation



3
(A8) becomes

2
- (_1 5 i_*v_) & =0 (A13)
without approximation. Thus the outer equation in the 1limit

as k +0 for fixed n is
. — ; }I_Lz =
¢.nn + ( 1 + — o = o, _ (Al4)

and the outer solution ¢6(Y) -+ 0 as ﬁ 4 =.  In fact the
complete expansion in powers of ;2 may be found, because it

can be shown that

9o ) = AnéKiu M (A15)

for some constant A of mormalization, where Kiu is a modified

Bessel funétion of the second kind. This gives
o (n) ~ )fii'rr Ae M = Vi Ae_kY as M 4 o,

of the form (All), and

b () = ",/zl'A{”iu)(%n)%‘i“ + (i) Gt s O(niim)} as n+0, (416

where T 1is the gamma function (cf. Abramowitz & Stegun 1964,
889752, "9.6.2y 6Ll 9.6.7; 9.8.10)
The inner problem is found by putting k = 0 for fixed Y

formally to get

Py 2
+I_]l_¢ =0, (A].?)
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where the inner solution ¢i satisfies boundary condition (A9)
at Y =0 but not (A10). Again, the problem is simple enough to

be solved explicitly for all yu, it being easily shown that
= 2 ; 1 . ra v 4 5 ] . -y <
¢i(Y) (Y + 1) {?P—£+lp\lY) + B P-i-lp(ul } (A18)

is the general real solution of equatiorn (Al7) for an arbitrary
complex constant B, where Pliii are the associated Legendre

B £23
functions and B* is the complex conjugate of B. Then boundary

condition (A9) gives
'BﬁziB

according to whether ¢ is an even or an odd function

respectively. Therefore |

Bi% Z—iur(—iu) ."i]_[ - '-ip %-ip
R S {r(—i'u'—:l)_ ™

in . ¢ o s
2160 [iiw i(—-i)”*}y* 1.“] a8 Y4 (A19)
iy - 1) '
(cf. Abramowitz & Stegun 1964, §8.1.5 after correction).
We next match the inner limit (Al6) of the outer solution
9 with the outer limit (A19) of the inner solution b3 in a

region where Y is large and 1 1is small when k 1is small.

21 g i
One may identify terms in Y2**  in each limit, so that the

T3
ratio of the coefficients of Y?*'M in (Al6) may be made equal

to the ratio in (Al9). It follows at length that one must take

the limit as y ¢+ O in order to make the matching possible.



Then relation (A16) gives
= .
¢o(n) v —2p  An‘sin(pfnin) as n+0 =and § 40

and (A19) gives

b i(ﬁu)_lcos(uan)
¢i(Y) v (-21)*BY* x { as Y+ and p+voO
}sin (p2nY)

respectively according as ¢ 1is even or odd. Noting that n = kY

and matching, we deduce that
penlik = -i(n + 1) as p+0

for n=1, 2, ..., where n is odd if ¢ is an even function and n
is- even if ¢ is an odd function, so that the solution has
~n -1 zeros in the overlap region where -—® < Y < «», Therefore

—(@+1)7/u as B ¥ 9U;/8 '(AZO)

-2
c v—2U"a Db e
n m n

for some constants bn >0 and for fixed o2 and n=1,2, ... .

Formula (A20) gives

=2 -
c —U ~ -2U" ‘b e (ol )n/x (A21)
n m m n
more generally when U(Y) = Um - %Ugyz, and therefore
3 (ac )
; -2 _
c =—2 =y+21"a be (n+1)n/u + ..
g aa m m n
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so that
— . - 0
cg c, v Z(Um cn) as pu ¥

for n.=1,2, iceo « Thus cg is a little greater than the

phase velocity and-lies within the range of U.

(A20)
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Appendix B. Semi-bounded linear profile,

Consider next the basic yelocity
u(y) = U;y for 0 gy < = (B1)

where Ué_ is some constant. Then the eigenvalue problem is that

" + {=a? + /Uy - O} =0, (82)
$0) = 0 , (83)

and
¢(y) =~ 0 as y & o, (B4)

Again, this flow can be shown to be stable. Also modified Rossby
waves occur only when U& “ 0 and ¢ < O. Further, if =0
then tﬁere is no‘modified Rossby wave, because no solution of
_equation (B2) is compatible with the boundary condition (B4) at
infinity.

So we may suppose without loss of generality that U; > 0,
>0 and c <O in order to find the modified Rossby waves.

Then it is convenient to define

= - 1 = 1 = ) 1 -
Y = 2a(y _c/Um), b B/ZaUﬁ_ and 2 2ac/Um (B5)

so that the problem may be rewritten as
+ (-1 + D¢ =0, (B6)

$(Y) +~ 0 as Y » o (B7)
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and

¢(}\) = 0. (BS)
Now équation (B6) is Whittaker's equation, whose solution satisfying
condition (B7) at infinity is
N 2
$(Y) = e U(-b,0,Y), (B9)

where U 1is the second solution of Kummer's equation (cf. Abramowitz
& Stegun 1964, §513.1.31, 13.1.33). Then the boundary condition

at the wall gives the eigenvalue relation,

c =-U'A /20 for n=1,2, ..., (B10)
m'n

where An is the nth positive zero of U(-b,0,2) for each given

value of b.
Again, we shall find A and thence c asymptotically by

making the ansatz that A + 0 as b+ b > 0. Then

1
0 = U(-b,0,2) = T'(T:—

S + 0(-bXxtn2) as A+ 0

(cf. Abramowitz & Stegun 1964, §13.5.11), so that
> +0 as b+ b =n, (B11)
n n

because the bn are the poles of the gamma function.



