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ABSTRACT

An asymptotic procedure utilizing ray Banronr ias applied to
the problem of dispersion from an Ilnstantanecous point source under
the combined influence of diffusion and advectfon, It is found
that the ray method offers a relatively simple procedure for obtaining -

a first asymptotic approximation to the solution. In certain

R

instances, the first approximation turns out to be the exact aolution,

while in the remaining cases, somewhat more work will yield a full

asymptotic expanslon.

In two particular ceses, the exact polution is obtained with the
help of these methods. In the firet case, the flow velocities are
any linear combination of the conrdinates, and the diffusion co- :
efficients are arbitrary constants. The other casé is a one-dimen-

sional problem without advection, but in which the diffusion co-

efficient 18 n linear functicn of height,
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1. INTRODUCTION

In vecent years, attention has been drawn to the importance of
advection as well as diffuaion in problems of diaspersionin a fluid
(Okuba, 1968), (Bowles et al, 1958), (Bowden, 1965)., Thus, when an
experiment is performed Mﬂdcpﬁmbm the release of dye, say to estimate
a turbulent diffusion coefficient, the shear in the fluid motion
increnses the diaspersion of the dye beyond the amount to be expected
from diffusion alone,

In order to estimate this effect, solutions of the diffusion
advectien equation are required for various flow patterns. Under
certain circumstances, this may be done with Fourier ﬂﬂm:mHOHB.Emnramu.
but direct application of these methods can involve serious diffi-
culties (Neuringer, 1968) even with simple flow patterns, ¥For this
reason, solutions that have appeared to date ncrcvm. memyw (Neuringer,
1968) uasually correspond to the simple case of linear mrmrﬂ in one
direction, plus minor variations such as a constant gravitational
field or a time-dependent and space-independent mean flow.

However, it is often the case that an asymptotic solution, )
rather than an exact solution, is sufficient to obtain qualitative
and even quantitative features of the solution, and asymptotic
methods are frequently easier to apply. >_ﬁaﬂnnnzamn~w powerful
procedure has been developed by J. B. Keller (Keller, 1958), (Keller,

1962), for application to various wave problems, and later extended

3
by R. M. Lewis (Lewis and Keller, 1963), (Lewis, 1964), (Cohen and
Lewis, 1967) to a variety of other problems, These problems include
optics (Keller, 1962), acoustics (Jeffreys, 1962), water waves
(Keller, Houmv. (Shen and Meyer, 1967) as well as isotropic diffusion
without advection (Cohen and Lewis, 1967).

The central feature of this technique is the construction of
approximate golutions by the use of rays, that is, a family of curvea
in aspace.time on which the approximate solutions satisfy ordinary
differential equations. The rays are themselves defined with ordinary
differential equations, which are generally simpler to deal with than
the original partial differential equations. '

In the present paper, we mmnw% the Keller-Lewis ray theory to
the problem of anisotropic diffusion-advection, and consider specifi=
cally the case of an instantaneous point source, In the course of
go doing, we obtain an extra dividend: for a wide nﬁpmm of flows,
the ray technique leads, not to a sequence of approximate solutfons,
but to the exact solution itaelf.

In”2-4 of the paper, we develop the formal ray method procedures,
In gection 2, we introduce a "large parameter" into the equation,
that is, a scaling factor relating the diffusion coefficients to
other scales in tle wnacwmgt We then write the solution formally
as an asymptotiec expansion in this parameter and obtailn first order
partial differential equations which the various nnﬁsm in the ex-

pansion must satisfy,
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In section 3, it {8 seen that the differential equations for the
terms of the asymptotic expansion lead to the formulation of ordinary
differential equationa for the rays, and the value of each time in
the asymptotic expansion for each ray of the family,

In section 4, we obtain boundary conditions for our rays in
terms of the boundary conditions for the diffusion equation itself,

In section 5, the ray methods are used to solve several particular
examples, First is the diffusion in two dimensions through a linear
shear flow, as considered by (Neuringer, 1968). The asymptotic
expansion truncates, and the exact solution is found to be the
first term in the expansion,

Our gsecond example generalizes the first to the case where the
velocities u; are arbitrary linear functions of the coordinates,
whose coefficients, together with the diffusion coefficients EAQ »
are arbitrary continuous functions of time, Special mMme include
diffusion in three dimensfons through a linear shear flow, as
considered by xomcvmv 1968), as well as bilinear shear flows in
two dimensions. .

The final example solves the problem of one-dimensional diffusion
without advection, in which the diffusion coefficient is linear with

distance, In this case, the ray method leads us to an asymptotic

expansion for the exact solution. Indeed, although the asymptotic

nuwwnu»on convergea nowhere, its form turns out to be gufficient

L}
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clue to determine the exact solution, and it is then easy to verify
the above statement that the ray expansion is asymptotic to the
solution,
®;

In sections2-4, we shall gencrally :wammw for the position
coordinates, U; for the velocity noanwumnn. and ka for the
coefficients of diffusion. We shall use the summation conventien
that, whenever a subscript appears twice in a single term, we assume
_summation over the subscript from 1 to N where N denotes the number
of dimensions under consideration.

mu. The Diffusion, Dispersion, and Transport Equations

We assume in this paper that anisotropic diffusion in a fluid

medium is governed by the equation

L = o ecC
wm + %wwm:&hv i %wmmxhh wﬂwv i
| USRS

in which the diffusion coefficients mmbmmmhw

2.1)

e dinerd {0

WOHE.w“wwasmnH—n.

positive definite tensor, and together with the velocity components

Qmﬁmtvmu , ara prescribed, continuously differentisble functions

-~

of position <X

; and time t. Except for the concentration C {itself

all dimensional quantities are denoted with a superposed cap " ~ ".
These assumptions suffice to ensure that an initial-boundary
value problem on a compact domain, with C specified both initially ;

and on the boundary, is well posed. Furthermore, for a problem
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in an unbounded domain uniqueness results from a "radiation condition'
of thia type:

m_/._. ﬁﬂu o ﬁim{av

-~ 2¢
_A-.__. ﬁ u.x.

-

(2.2)

l

where \mp;ﬁ m,_. » N denotes the number of dimensions, n:mkﬂ_m:onnw

-~ 4 ]
"small order of'", 1. e. ¥ U G =2 .

Our concern in the present paper will lie in the "Green's
Function" or "instantaneous point source" problem, Locating the

instantaneous point gource at the origin at time zero requires the

condition

C(%,t) — S5(%) s tio0 (2.3)

where $(%,) denotes the Diyac delta function of % , and S denotes
the source strength,
By (2.3) 1s meant the relation . e
J & BDYEMZ— /o) 2y L 40

| ) for all bounded, indefinitely differentiable functions Y .

This implies, in particular,
: SciR,2) dg;

ti0

—_— s

C(x,1) * 0

-

—_—

s Lt g0 ﬂe-.

We introduce non-dimensional variables
I a % = R /L
t = BT

\\m.n.

/*
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where |, T and W denote "typical" values of length, time, and
Ed ¥
diffusion coefficient, respectively,
Then (2.1) and (2.3) become

[y
3k wC) - Brk3E)

.

(2.5)

Q mx__.ﬁ._ ey h..z §(x;) as t 1O

(2.6)

T

e

where M.d ¥ Without loss of generality, we may take v.__._z to

Ay

be unity.

The (non-dimensional) parameter A in (2.5) 1s precisely

the "large parameter" in which we seek asymptotic approximations to

the solution. We will be interested in the behavior of zolutions of

(2.5) as A= o0 , The meaning of this limit may be visualized as

concerning larger and larger length scales, or smaller and smaller

time scales and/or diffusicn coefficients, § ” ..ﬁ

Following the Keller-Lewis ray procedure, we apply one of the

following forma of "Ansatz"

{x;,t)
C (X ,t) = At e V_g Qv.d\ E (2.7a)

or

C m‘x__..w.u =

A \a....ﬂ.. n =ne+
e’ S A" X (2.70)

as A oo t
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The original use of the form (2.7a) seems to be due to Sommerfield
and Runge (Rline and Kay, 1965), while the form (2,7b) is more
generally used in the Keller-Lewis theory,

The motivation for (2.7) 1lies, first in the form of the well-known

exact solution for (2.5), (2.6) for isotropic stationary media:

C(%:,t) = «.?_w:ﬂu.._\p e xp ) \x_urv

TRt

and secondly in the success in applying "Ansatze" similar to (2.7)
In the latter cases, the A in
iAy

To define the functions Y, b m s we pubstitute (2.7) directly

to acoustics and geometrical optics.
the exponential functions is nnvumnmn by
in (2.5). The result is an expansion in powers of ) whose coefficients
are expressions involving 7V, >~ A .

By setting each such coefficient to zero, we obtain the following

i A

equatfons: . #i
= LAY Nlu.t 2
.M.u.m. s - T r\d e \un (2.8)
and
ook ol E B 8) 2R 2 L AT (G 2r)
5t 3: 23 i 5 .._g + 2 4 3% 5%, + \.’ K i uu‘._v (2.9)
for (2.7a), or
AT . % e 2y opm e 2 2
g 3% T:,p T. 2Ky x; 3% _.h A L] m.wn\u (2.10a)
W3 T, A™Y) =2k %E At 2 (K22 ) 0 2y (i ") (20100
St dn; Y ? »v\u Fl ...lmu..:r, —A_.m.mlim

for (2.7b)
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In the case of geometric optics and acoustics, the function N4
correaponding to ﬂh is related to Brun's eiconal (Kline and Kay, 1965),
and the analogue of (2.8) is known as the eiconal equation. In the
present case, this name is inappropriate since the behavior of
solutions of (2.8) is significantly different from those of the
elconal equation. Accordingly, we follow Lewis in calling (2.8)

the dispersion equation.

The equations (2.10), with which we will be working, are known

as the transport equations and the Al as the transport terms.

These equations define the transport terms iteratively, using

(n-1)

and A to obtain A Aav. As will be seen, a constructive pro=-

cedure exists for the solution of (2.8) (2.10). When these terms
are obtained, the expansion (2.7b) may be expected to yield an
asymptotic expansien to the solution,

The equations Au.umw and (2.9), on the other wwsn.~armhvm
found useful on occasion in obtaining or verifying an exact solutfon
(see section 5). However, the constructive procedure developed for
(2.10) does not work for (2.9),
3. The Ray Method

The dispersion and transport equations (2.8) and (2.10) of the
last section are both equations of the first order, But it is
known (Courant and Hilbert, 1962), (Garabedian, 1964) that whenever
such equations have a solution, the solution may be ov.nnnam.» by the

method of characteristica.

il
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H | If we sat pi = WW. , 5= w.....w..,_n : Accordingly, we may subtract (3.1) from the formula for mﬁ.am\ in
i i !
M i (3.2). Making these changes, we find that (3.2) reduces to:
the dispersion equation (2.8) becomes ' . : A,
' i Te T dr=digp
; !
| S+t Ujp = Ky pipy (3.1) 1 dy -
: . : aE R e
and the characteristic equations are | dpy Py 2K (3.3)

&

. i i J o of Y ;
; i dE Pi * ==2¢ P Pe
9% = w [u -2k py] b 2%y

‘ .H.\W . _ . We ..ﬂ_w_qm dropped the equation for M.mm since it 1s no longer
__ m.w. o Kespeps) ity ”_ needed nw form a well-defined problem, .
3 i
_. _w_%\l . 7__..w|w._m g uw_m..uﬁ. g _ah.“ | In the general theory of first order partial differential equations,
h w_lww i a gl .....w.w.a...F pi = wl:m& ’y ?\._ / _ the solution of (3.3) (or (3.2)) is said to form a characteristic '
i If a solution Wy ( %Xi,+ ) has, at a point *{ at time t°, the strip, or bicharacteristic, However, in view of the role of these
I value c\c » and the derivatives .w.m. 5 .w,d___...m have values \._J 5° : equations in geometrical optics and acoustics, we will refer to the
i h respectively, this poses an initial value problem for (3.2). The curve \f?u as a ray and equations (3,3) as the ray equations.
_ solution of this problem yielda a trajectory, (o) _L_.\vu in One noteworthy feature c¢f (3.3) is the observation, due to the
“ parametric representation, and everywhere on this trajectory . ; positive definite character of Ki; » that ¥ 1s a monotonic non- ._
_ _ Y/lo), pile) and  5(s) agree with ‘:\mu....ﬁu_ .w]M ?:.._Lv and .Ww (x;,¢) increasing funetion of time along each ray.

_" Given a system of initial conditions, depending on a set of
\ The arbitrary proportionality factor [t(r) may be selected to
i ] N-parameters (say 7, 7, .. .y %, ), then the solution X _\w‘..w__,v 5
use any quantity which increases monotonically along the trajectory
! \_%:..B& of (3.3) provide an N+1 parameter parametric solution
! " a8 the parameter O . 1In particular, setting M=| allows us to
of (2.8), so long as the Jacobian

_ :
identif r = ° : A
m en y o=t .u‘m.ﬁ.-w. d = .vﬁ..u__._.Xn....v.x.Z_J
) L R e
j It 1s known that 1f the initial values s° p°.x{ and t° satiafy Pk 7 ) 3.8)
i . » | EE L N -

(3.1), then the solution to (3.2) will eatisfy (3.1) identically. ; does not vanish identically,
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Having a solution of (2,8), we may proceed to the solution of
the transport equations (2.10).
By (3.3), along each ray we have

Lo, dx 2 - 2y )2
At rw|m+..h~.ﬂuw.m.~..u|ﬁ..~\s.. Mm:.._.u\u

whence (2.10) becomes

da o [ 2 Y N vy
Mbﬂ = A wakx: x__g 2%, N (3.5a)

: . —_—
n}_uﬁu.wwﬂ..qu.m Wyﬁuvlmmm.gv W.xj_m:—h v.ob.n. v

219_

(3.5b)

That is, the transport equations are reduced to an iterative system
of ordinary differential equations along these rays,

A straightforward integration of (3.5a) and (3.5b) 1s voamwvwm.
but it is easier and faster to proceed as follows:

It can be shown that the Jacobian (3.4) satisfien hwﬁumepwoauum

equation along the rays:

1w TlE

o
.
A

v _ (3.6)

A

On substituting from (3.3), we have

2L o7 wm.\ww?__ﬁi .

et ¥y 2%;

or, with (3.5a) .

" I . _ 4 fo) Y oy, 3.7
A (a7 %) - AT 2 o

e o S e ekt il s i, el 5 s
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: 2uy
In the event that the given flow is non-divergent ( mnﬁ = Qv
el Lr
then A" J is constant on each ray, or

i :w..w .,mz:Hq:..w:wf.._.w\::

where f(7 2 -, ¥,) 1is an arbitrary function of the ray parameters

[P A

only,

If the flow is divergent, on the other hand, we fin

) = (¥, ER IR ICER w,..z‘_\.nﬂ_u -% g Lﬂv
(3.8)
the integration being carried out along the ray. '
If initial conditions are given for A ‘' at time ty and
I MG S R A I » then :
o) @ Syt u v
NZ) =AY [ 57 e (- 45 3 4 L (3.9)
where the dependence on the parametera is c:nmuunmum. i
With a mowcmwon A (+ R A N A to (3.5a), we
may solve (3.5b) by setting
A™ () < F () A%%)» or using (3.5a) and (3.5b)
A® w!m = wﬂ. :\,: wﬁ (A :_.ﬂ:.a
whence
(3.10)

t -1 3 g
A™(E) = ALY+ A™Ce) b [ ")) mw: Kij (5 A S 4
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ylelds a oonwnﬂnnna<w. iterative procedure to obtain the remaining
transport terms,
A geometrical interpretation of (3.8) that is frequently

{lluminating is as follows: A ray tube is a region of gpace=-time

generated by rays (see fig. 1), If the ray tube is sufficiently
thin, the Jacobian J is proportional to the volume (or hypervolume)
of the intersection of the tube with hyperplanes t= const,

By (3.8), the quantity

Q= (A")* expl S 3 ar] (3.11)
is inversely proportional to the Jacobian.

Accordingly, for sufficiently thin ray tubes with nnouuummon»onnp
volume d & (t), Q(t)d o (t) = const, ; (3.12)
That 1s, Q (t), given by (3.11), represents the density of some
quantity that ia being transported conservatively tﬁnm the rays,

i.2. (3.8) represents a conservation law. : s

In the theories of optics and acoustics, the nonﬂwwmoﬂaHﬂm
quantity is the square of the wave amplitude, which measurea the
energy density transported by the wave. This suggests that (2 (t)
may also be connected with some phyaically significant quantity.

In any event, (3.11), (3.12) offer a means of obtaining geo=

metrically the transport A £

when the rays, and hence the cross
sectional areas, are found, This procedure is eapecially simple

for non-divergent flows.

15
4, Initial Conditions

As with other Hamilton systems, the solutions to (3.3) are
fully specified, given initial values for the «%;,V p:
for each ray mm the N-parameter family. We are now faced with the
problem of obtaining such nosmﬁnpozar corresponding to the given
initial conditions for (2.5).

Historically, this problem has been attacked heuriatically
(Lewis, wwa@w. (Cohen and Lewis, 1967), (Lewis and Keller, 1963),
usually from "phyeical intuition", or by comparison with a known
solution to a simpler "cononical problem" which preserves nignifi-
cant features of the given problem. 1In scme cases (Lewls and Keller,'
1963), boundary layer methods offer a more direct means of obtaining
boundary conditions. The complexity of the latter methods, however,
leads us to use the former approach here.

In the case of the instantaneous point source mnavnmsu the total
concentration of diffusant is located initially at the origin. It
seems plausible, then, to assume that the rays themselves emanante
from the origin, By this reasoning, for every ray in our family,
we should asgume x ; (0) =0.

In order to have a parametric representation in a space-time
neighborhood of the origin, a ray must pass through every point,

In order for this to happen, we must allow the initial values for
mw ¥, to take on all possible sets of values, one sét for wwar
ray. By (3.3), this implies that the initial values for Pi,

take on all finite sets of values, one set for each L )
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ray. Conversely, a given set of initial values bha will determine
each ray. Hence we may uge w% y rather than uw » Lo parametrize
our family of rays.

Thus, the boundary conditions for our problem are
X (0) = O
pilo) e pit
WY (o) .?_.Q:.u (4.1)

But, 1if Y(x;t) , defined parametrically by (3.3) and (4.1),

is to satisfy

1

=

Py
W0 Bl B8,
3 ____.....-_1.9.‘..~ (i u

Www. =0; 1.e, the initial value utn is:

W

Xy

and the Jacobian does not vanish identically,
it can be shown that
constant for the entire family of rays.

Our boundary conditions for the point source problem now consists

ok %;f0) = 0 L e
Py __\h__ = nuu.ﬂ v
W)y

(4.2)

vhere the p,° take on the entire range of values ... g === and

the /°

The range of valueg for the 1mo

is fixed,

is unrestricted owing to the
; 0
parabolic character of (2.5). For hyperbolic equations, the P; must

be restricted so that all rays remain inside the characteristic conoid,

17
and for non-dispersive hyperbolic equations, such as the wave equation,
the rays must lie on the conoid itself (see Lewis, 1964).
To complete the analysis of initial conditions, we need a value
for V', a condition on the behavior of the transport terms a ™’

near t = 0, and a value for the &< {in the expansion (2,7b).

To obtain these, we consider nrm.mo-o=»am "canonical problem';
Uz0 , xwhu const. This is the classical heat conduction problem,
the solution of which has been frequently published (Carslaw and
Jaeger, Hm#uv. (Lewis, 1966), (Courant and Hilbert, 1962) and many
others,

The ray equations become

o x,
L_.’ml : LM Xu.._. .o..m
dw =
Te - Kijpips : (4.3)
dpy
2t 0 e
and the boundary conditions o
A lo): o
Picor: py°
\wn\«__\_u%\.n
whence ) -
Pi =p;° = const,

\.un,.n. = INRQ m.._-.a.ﬁ

Yoy -k et
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We then have

|m.n_n..q = Q‘A-.V...“.ﬂ_ x;

is defined such that :A-_M_,. _Au. = ﬂ«._w m.._,r being
3

(where QA.J

L}
the Kronecker delta) and so

Y= W - (K Ra 4.4

)]

The behavior of the first transport term [\ (x:,t) is
determined by the Jacobian
Je M) N _
3 (p7) (2t)" det[Ky]
from which _. ;
o = - ||1I|I||||.||||-1I_I.“| !
A’ ymﬁu ot _“: h = (z ) mknnhxu.LM\ ‘

We

Thua, A °’(t) is proportional to t~ on each ray, where N is

the number of dimensions. This may also be seen as follows: The
rays are all straight lines through the origin \xg..,., 0, ‘...u.ﬂm__. hence
the ray tubes are all cones through the origin (see fig. 2).

The t = const. sections of a given cone have linear dimenaions

directly proportiongl to t, so the N-dimensional volume of these
sections, and hence the Jacobian, is proportional to t" . By '
(3.11), (3.12)
fay L
h}m._uﬂ o Lﬁ.lt un...._ G A\...__\'

3]

Since A (t) necessarily ia singular at t = O, the initial

. (s
condition on A muat define, not A Jﬁ.E , but the proportionality

factor relating A™"(t) and + % .This factor may differ for

|
i
i
1
i
.
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different rays, so we have
)?,ﬁ.f._ﬁv . 3% Q -\\?J - ,ﬁ-z\a\& Nm.nh_
where Q.. and (f are arbitrary functions,

Hence, the ray method obtains a first order approximation to

C in the form: . .
. T g w e
Crie) = AT g (%) o AN
: (4.5)
with o, 7" constants and ¢ a function yet to be determined,
The ‘actual solution is ")
", ' -1, - Xr A i 8
Co (Fr)* fdetfrg§™ g M
(4.6)

corresponding to
v 0

Actually, nﬂou as given in (4.5) satisfied (2.5) whenever E\w..h

" 5

satisfies . ot

2 P B :
o5 M 5 70 (4.7)

nAu?_\N..

B« feay™ et [6,1]  ana

o/

615) (K9 5,)

where ! is any harmonic function (solution of Laplace's equation in

Solutions of (4.7) are given by

N variables),
Moreover, if the \¢ is exponentially bounded as :_..__ = :?._ m_*ﬁg...e..c

then, for all t

J Oty dx < (k)" g 77 Y § et [k TR
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corresponding initial values for the Tay equations will be

|
80 the total concentration is unity, independent of ) , provided “ ot un o
: | 1 2
-l . i
] = : v A L i ! ~ e
! Flo) = (Y % Flet [KyJT ", =%, Y °:0 .8 | pifo) = Py p—
| . | Yio) =0
|
m stnce fim C"(x,):0 when %% 30 and [ (%, t) % = | o , .
I tio : 5 m._ i where the fi take on all values and, for the first transport term,
i and there are an infinite number of exponentially bounded harmenie .._ !
_ I
H 1 t the origin, it appears that there are H ta) N/, ! ;
| functions with a given value a gin, pp gl b_ o \mu a .ﬂ__mﬁ mum.ﬁ_ﬁ?muw_\a s £10 i
i i T -
i an infinite number of solutioms to our problem, __
1 ' EE
“ However, it can be shown that C® (%, L ) tends to the Dirac : d 5 .
| [ where K,j - Kii (% (0), 0) 1s the value of Kij at the origin
j delta function only when ¢ is a constant. For all other solutions, !
! | at time zero, Furthermore, the expansion (2.7) will b the f
e (x, t) tends to a linear combination of the Dirac delta function ,_ L re, P .u_.a_..n ) e in the form
r [}
: Me-h 4 (n)
with its derivatives. ! . ﬁ,_\\f...: = ey AW UE -.M.s A h \%.?3
Since the x: are assumed positive definite and symmetric, we t _ o0 ay Ny L
may, without loss of generality assume the coordinates’ ¥; chosen | The initial conditions for the higher order transport terms are
! . »
i 8o _A:. is dingonal, i. e. g 3 : - still unspecified. The present "canonical problem", offers no
." _ ki >0 : 1 PR ; : by
_ XC. = m 0 if 3 % ] assistance in obtaining these conditions, since the exact solution
i
In this case, the solution (4.6) reduces to the standard forms is precisely the truncated asymptotic expansion. Nonetheless, the
A\ §-2 (%, 3
C+ mﬂ....nq j\- cxp CT S e el JNI.N last problem treated in the following section will {llustrate how
[Nt 1Y » i
i ' these conditions may be obtained from two prineciplea: Firat, that
if the i differ, or -
o Ny N K Ka A /A can be continuously extended to t = o, secondly, that no
C = ?iﬁ.u e m1 tKt m P
. i transport term A y for w>0 | contributes to the strength of

if the F. are all equal to a constant K.
On the basis of comparison with the canonical uu_o.u._.ws. we will

assume, for other instantaneous point source problems, that the

the mource, g
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Examples
A. Linear Shear Flow in two Dimensions ;
Write M=U, K v:y, , Hx= K, 3 :u =3
Suppose
Then equation (2.5) becomes

2
2t

2cC

+ by 5% ° mm Ko SSa s mﬂ U

corresponding to diffusion from a point source in a
dimensional flow field of linear shear (see fig, 3),

The ray equations (3.3) become

.n FM I.N_I‘wﬁ

1 A

= -u_,,\mw

B
o

s
o

oKt g >

Lo
M
A

~ e

o

when we get PP 3P '

m The boundary conditiona are

! + ,H.\.Nm..uul \N\bvu d\\___\bvnmu
| PO Pt G g

—— e e e o s G

E‘HTN‘ , V=0 and :_-nﬁw X.Kv_r\ku:.—v

? a4t

; XX, and 4.,

are constants,

*c

(5.1)

parallel two

(5.2)

(5.3)

i i
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and the solution is easily found to be
P=p°®= constl. g = a_umoﬁ +g°

.Lm“ K, wm;,awxum,m
e Oy My bt EY <2 kp) ~ K, byt
W= (P [ Kt ds,1t 0] rpoge Ky b7~ (57 "kt

x and y are linear functions of p° and No » ,with coefficients

(5.4)

Now,

depending on the time, while @_\ is a quadratic form in _ao and 7°,

.o_._m:_.___w,mm.nﬁum w. and w, by writing them as linear functions of

x and y, we find
) ! e ...MIH . o 3 * oy
d\u :n:.\n.\_pv‘.\ Hx * |sz|. - - :,,Hlvg

Ky

where v

o

b (B2)4% e (k)
The transport terms are found through the Jacobian
2 . e
J-= ﬁﬁ% = KK, U012
and the first transport term is,by (3.8), (4.10)

)E i ! e ! ey
T KeHyYs € (14 Tha)

vhich is independent of x and ¥

Our solution for uni-directional shear flow in two dimensions,
then {s

g 2
¢t

e -2 X xm T Y
LR .ﬂﬁ:.n.xu.ue_ £ nx_am,:..b‘d-\-nw.b\ Ity |w|11 v.m.ul, 3» .\uvuw.w

(5.6)
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The result (5.6) agrees with that of (Neuringer, 1967) and
(Okuba, 1968, It should be noted that the solution approaches the
classical solution (4.6) for no shear motfon when T << | 3
accordingly, it {s reasonable to define ‘T as the time scale for
effects due to the shear, while t represents the time acale for
diffusion effects,

The level curves of (5.6), like the level curves for the classical
solution, are co-axial ellipses centered at the origin, Unlike the
classical solution, the axes are not stationary with time, but
rotate under the influence of the ghear, Surprisingly, the amount
of this rotation need not be equal to the rotation of the underlying
fluid, nor even in the same direction, Its magnitude and awunnnnon
depend on the relative values of +»wy 7av and b,

B. Flows Depending Linearly on the Coordinates

In the case of linear shear in two nﬁamnmmosaa¢mmm asymptotic
expansion obtained by the ray method truncated to one term, and thus
became the exact solution. This fortuitous circumstance also annrnu
whenever the diffusion coefficients *Anb are independent of, and the
flow velocities YU; are linearly depended .on, the noonn»zmnmr %y .

Specifically, we suppose

Xm% = rmMﬂﬁv 3
F_mkfi = uUllt) 4 @ij (+) % (5.7
where the K#thv. Fmﬁnunna ngm% (t) are nwupnurnw cont inuous

functions of time,
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In this case, our ray equations (3.3) are more conveniently

written in the matrix form

dX [y +eLX-2kP

o £
dv . _p’
e N
dp T »
e . _RTP
vhere Y U and P are column vectors and 1)

g,

(5.8)

and vA

matrices with components 7. :w. Pi , “yj and kﬁa.. respectively,

The superscript T denotes transpose,

P

The problem of solving (5.8) reduces to that of solving the

homogeneous equation:

48 .. " p

)

am.mu

Indeed, let [V] (t) denote a fundamental solution (a non-singular

matrix-valued solution) of (5.9). Then ﬁv;iwq,ﬂwv 18 a solution

of the homogeneous equation !
ok K
It ° .MN Mm
In consequence the non-homogeneous equation for

becomes

LIWx] - MU -2m7P

The solution for F is in the form
P =Hwy

where ﬂ‘ is an arbitrary constant column vector, whose

ww represent the ray parameters,

in (5.8)

coefficients
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Then
X-m1" St U -2nTkPld ]

or

M : M—\_J”_._h.__n34 Udt - M@\M._..._nk\whn:ﬂ_\nzu__\n‘.m r (5.10)

while

YVe-rTSnTKkMdx (5.11)

¢
.ﬁ MkMdt by $ and note that S is

We denote the matrix o

a positive definite symmetric matrix except when t=0, in which
case 5 vanishes,
Consequently, for t »p0 , ", and hence W may be mos.a.. in
terns of J and t:
Fe-ds™ En" X -5  nude}
AR USRS AR W S AL
or :

Yot (nir-gtntvat]’ S IR (S AT U] (5.12)

The first transport term A{®) 1s obtained
from
; ; -
qmnunknnmmrw.; . knnﬁmm:.ﬁ Mg !
ki .
We note that, as t - 0

J(t) ~ 2" det Klo) det 11(0) ﬂ_z

whence, by (3.8 and (4,10),

E) A . |
K G (5] e 0 g

|
i
i
|

——————
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st (0) )
nce A is independent of N » we need no other tranaport

terms.

The divergence uu...wh_ of the flow is given by T« [02] = Troce [w2]

80 the complete solution of

a

i . 2
25 5 o) - L2 (k%)

24 2y ¥ '

for instantaneous point source diffusion in the case :.:, P Ky ft)

Up Uil () e gy 1)

Y

is given by
C- M-_\p .b__.;_ exp i-2 .v\_‘.«__ng.w exp M =% hn .ﬂ..__-_b.mkrﬂm (5.13)
where . !
L det [170) det Hie) T
A T ™ M = det mn.w.: u.“
Yixt) - -1 qu - ‘_.ﬂz.ﬂc.a__duﬂ Sz —.uz.__..M. r\ﬂ-nz._-c.&.ﬁ\\ (5.14)

Sty = (P MTRMdx
and Nlt){s any fundamental solution of
d T
at=-Ju M
Case 1 Suppose N=2 and
Cnm‘aN MN_uM.u_uM _ [keo
Q ) oo . _A - 0 Ru

where x.._.n,? b are constants. This is mimply example A, of linear

shear flow i{n two dimensiona,
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[
Mp Mﬁtﬁ .—wrﬁ_xﬂ |W __A.U_UJhm;\
-3 ky b t? Koyt

M..u ! HX I3 Lok t
iy v 1 v.wﬁ
Kok 1's & 440 ot
Htta bt AT R RTA

Ye-bz'(nsll - = SR T x
. - 5 .K..- Hd
.cwww‘dﬁ_.m_u.wn—.w uq X K, pet x-u.mn.h__ﬂgﬁw

and
_}?_ ] 1 |
A_*w _.mw r,ﬁ.v‘...

ST e )4y

]
Thus, €, as given by (5.13) results in precisely (5.6)

Case 2, Linear Shear in Three Dimensiona.

In this case, we have . il
LU I e [ Koo
U- ﬁ o0 g g # Ma o0 K ok, o
o 0 o o 5] = X.u

(c.f.(Okuba, 1968)) where ., wy K,k K, are constants.
' 1 [t N1

? f
Then
. I . o 0’ )
M) M-ci ;o
e R - o
[ Kebeloged -1 a .
5(¢) ~ RECSE L PRy tt b Kt
- 3
+ K i kot o

J% .&u.ew .m‘r = Q _\AM.ﬁ
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where ﬁ i “Ac nc.dp i _Am n,.w.v R

det S (t) wawﬂ_&m.ﬁwﬁ [+ L \N-N

where Tt _.\& N.\- .
- L )
MNﬁu ' = ! E— Ky t mlﬂm' oy
ﬁ\__.__.hm\ﬂ?v i LE 2 by
Ik Lt Kaon t
W - " ke Tk, | T2 Ky K, Syt
iv i
e
4 rlwan - t s?.uuﬁ
Kx Lt T

Ve 2] [ s

N >

where

" t i B
Xioo o f, Uglt)dt' v oy 9t yeapzt

Some further b.nm...eun._.n manipulation leads to -

i Cx- Lt uddt] 1 oy
Y- T (Y M [ 1 NM H_:Mfm.w
(5.15)
z* 1
m}u..w %T Ta, + ..HM\N
3 12

Gy &by

[ L2 verder hfmkm .
x

N~
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a0
where A t{ky 7" . ey mﬁ.r\m ' " 5 g
s ° Kx T F k| T, e T
Moreover
R N g e Nl ]
A=) (Y™ [Jee ST ~ Gaey® (ak k)Y 142, ]" (5.16)
fal
with these expressions for A e- ¥ , the solution is
gzt = A% 4 () exp §- Y] (5.17)

For \:| , this corresponds exactly to equation (3) of (Okuba, 1968)

Case 3. Bilinear Shear in Two Dimensions

We now consider diffusion in a flow which is not parallel, and,

for simplicity, we restrict ourselves again to two dimensions, We'

consider the case where u- "9 Vi xand, for simplicity L=< ye. K,= Ky, =

and o, Sy K, and ww are conatants,

Thus

K = ﬁ ML ﬁww\_w.

and (2.5) is

c 3C w1 - Pe K o.nv
ﬂlml ,,.«r_.w w.w. + Ly X u_m..m = h) \r: 3x? + ] v..w.- .

+

I
The eigenvalues of QQ. are _ (e, w,) , and we have qualitatively

different flow patterns according as e 0 oY ¢y o, <0,
If ¢, e,>0, the streamlines are open curves in the form of
co-asymptotic hyperbolas, while {f L, ) <0 , they take on the form

of co-axial ellipses (eee m._.m-...b_ and 5). ¥

o

/5 Jfuis

k3

We shall carry out the computations for the firat case only, i.e,

that of @, w5>0 . Let T.”ﬁa.t.v.\" Then
L) i ﬁ-
Mit) » [ el ane™
-ey ert m et
is a fundamental solution for .
T
Lne -ATH.
Then
S(e) = (K@, v Ky,) sink(ut) ﬁ wett o
o m 8 e
o t
s (ke -k, ) ﬂ % g
: prt o

dat S(¢) = (Kryes b)Y sidut - (ku®e~ Ky ) prt?

AR wr M Ky v Kye,) sind pt H.?. R
I . 0o ‘.“h... it

S Tt Ky _H lw&imng lm

where

A &n.w Srt).
TSR (kg [ et i
....Trﬂly.th.l..ﬁ e.i}n

ety [0 7

]
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and If @eed | we could write &, E..u g I—, &

Y-t [x,5Ins' n? m w”_ RO 28,075+ falt)y® (5.18) Then a fundamental solution matrix is

i o Ot - fuy Sel £ b

N i Lo G ) & M

whers 3 2 Tas sl St G ogm St

) ]

%,«:«a ﬂ..rm.v. Maxxtu.. Ky@)sod ut cnhpt ~ ﬁ.xaé.:x»a_w__:.mw

fa)
We could use this matrix to obtain ¥, A , and C

-~

as above, but it ig simpler just to gubstitute ¢ for p in

1
falt) = ~|..W (kyw, + KKy o) vs.kuz & (5.18) through (5.21), If this ia done, we find

G € 01 24700 o Frv]
5 (X 9,t) = X A™() exp LWy, t)
Fuled = 5% § (s by ek p cant skt by} i
. . 4 in which
. Y= %__}L_ x4 N.q: NS.KQ ¥ .ﬁ.:,\:M_p
m (5.22)
_ J |
i i & ~
D (ke sk o) sl Pt - (kxen-Kya,) et g f AT A
_ : . (5.20) m . (5.23)
; . 2 r where 8 3 i
The transport term ia P i ; (0« - Sen 2500 g e o
b_:.,« sofiee det Hrlo) det ...:n:g ' I fu PN M\_—,-Pﬂ _A.vr_.vb..m (keess Kyen) so 5t D?Qn.w
G T det 5 B o~
Ao _ Tut _ ‘ (5.21) § _ o _ (5.24)
. * ) [ 7 : E 2 ~ = v
S _ , . o . fute) = - o m?...s....:ab&n_,?.s.;ve;feﬁSc&.
B
and and

PG

R LR

c?: exp A[fil0x% 26,()xg+ £,,00)4"] §

A = ﬁ:xan[ —ﬂ.vt..v...&u.nnl\_ﬂnen +r\v C.V..ﬂt,...nnﬂ.un\l . (5.25)

-

ot
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As t | 0, in either case,

Fo () m-gemy + O(Y) N

fult) = 0(1)

(5.26)
falt) » - L=, v0(1)
and . b\oaﬂ*v .+|.ﬂ_.lﬂ1_..lnl.u.““¢||.ll 46\%.%
f.e.
to) A sk = __ )
C (x,49:t) ﬁx ﬁ_+b\avv . (5.27)

g &
v AfK, t...q ¢

i

as 140 , so that these solutiona both tend to the solution for
classical n:.,mmcuwo# in the absence of flow, and hence n__ﬂm....wn_._ndubﬂ of
c(@) 44 independent of .mnﬂanﬁ._.nnn type for small t,

By contrast, as ¢t —= <= , the behavior of ¢l differs
radically between the elliptic streamline case and the hyperbolie

streamline case,

In the case & e, <0 (elliptic streamlines),

\}).l... - OQ- : -t
._.”__ o) Nﬂz..t-;_.«.v&.u.w ﬁ_ + 0t : :
olt) m 0(en) | (5.29)

Fult) = - uﬁ_ﬂhr Ko o) t (1+00™)

L | efmzl t (hote

A ~ Ee xv
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The level curves of .wt. and hence of ﬁ?v- for each value of
t are co-axial ellipses, By (5.28) the axes of these ellipses tend
to the nouummsmnm axes (or rather, the principal axes of W_._v
Indeed, the _umrh.uﬁoﬂ of non for large time tends to the behavior
of the classical solution for no flow, provided ¥xand T.m are
replaced by effective diffusion nonmmun»msnu.

_‘Axa * N_A ruw

&y

* iy sk oy
et ow R B ) (5.29)

respectively, In the event that @s-t, (eircular streamlines),

the effective diffusion coefficients are both equal to the mean of

Ky 3nd _r..,w and we have effectively isotropic diffusion.

By contrast, when <, «,>0(hyperbolic atreamnlines), the hﬁ._ and

A tend to

E Yoy Hlth
n w Hﬁ_nxcﬂ.w—Awnc..g

i il
"

(14 olire Y]] 25

fe (t) no ——m
2(K, e + Kya,)

(1+0 D.m.f:é

£ ¢ {5.30)
1 (1) =~ - M &, or¢eet™t)) .
M?xcnl«ue.u?v fee vv !

Ay

__n . —pmt g
ﬂ?__ﬂxn.ww_ﬂ&nc._h “ \h—. Qﬂ..n _1 vp
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ful '
The transport term A ﬁﬁd. which measures the maximum dengity

- Wy
at each time, tends exponentially to zero, rather than as L

,
as in the classical solution and all other solutions to date,
Moreover, the level curves of ﬁ\ , and hence onou are ellipses,
but the eccentricity of these ellipses increases with time untll, as
(5.30) implies, they degenerate into straight lines parallel to one

of the asymptotes of the streamlines. This asymptote turna out to

in
be the one/the downstream direction, (see fig. 4). L E

C. Variable Diffusion Coefficient

When the diffusion coefficients Kj; vary, ox the velocities

W; wvary nonlinearly, with the coordinates 7X; , the nnan:nnWﬁuanj
complexity of the ray method increases. Computation of Htub,e_m:m _
%, 1n terms of the p,° and t remains straightforward, if cedious,
but the inversion to obtain ¥/%t) and A”“(x,t) becomes more diffi-
cult, as does the computation of the x\!mirﬂwh n>o zVHv:»nr no
longer can be expected to vanish. Fortunately, it often happens
that the A(0) term is sufficient to obtain qualitative, and even
quantitative, features of the solution,

These difficulties decrease when we revert to one dimensional
problems. To illustrate the behavior of higher order transport
terria, we consider the situation of one-dimensional diffusion with
vanishing flow component, and a diffusion coefficient fun%»:m linearly

with the coordinate.
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Thus,

2G | 5 yn_ _ P
50 7 33 K5 K= xtze2®) (5,51
are censlants

x>0 and z2%">0

In the domain of definition of the problem we muat have K>O,

since the problem is well posed only when Kij 1s positive definite,

Accordingly, we can no longer deal with infinite domaing, but with

the domain’ "Z> -7", This suggentas a boundary condition will be

required at £:-2 . We will return to this point later.

The ray equations for diffusion from a point source at the

origin are
2. -2Kp
m‘ * “he (5.32)
with boundary conditions
2(o)z Wlo): 0 w__\o.__.. P’ (5.33)
and the solution is
P
2ez® = g% (1-peut)’ . (5.34)
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a8

or, upon inverting,

Yiz,t)= - u.mm m\mlwm\.v.\nu__vﬂ

(5.35)
e "Jacobian" is 8imply the derivative
T 0E "22tat(lprae) s -227ut (220
and o I - %\ %
y b m.n.u_ ok, _u__\. _\mmtl.__..u.\. mm: N-g
2 vx (5.36)

. = l
or L\Mw.t = aﬂﬁlﬂ\u T:ma

Thus, the low order approximation to the solution 1s 4

x 1
@, Voo 27 V\r u:._. 2z w
A\ll N Tw.:.m._oa.h‘u_\r g+ 2" cxp ﬁ I_._N AM uﬂv

In obtaining higher order approximations, the computations

become simpler if we relate the operator, e ,.
2 2 fn}
2 K53 A
with t fixed to a ( P% t ) coordinate system,
In such a system, we have
) = .
I £ s |- pout)
( (b 2wty ( e
while
2| = Wh.\ P\ & [ 3
t a2 & uwo 2z2%at (/- .ean.-._nu 3p° A

39
Hanmmm in a (p'«t t ) coordinate aystem, navnnuoanuum prat:
we have
2 e
22l R L = T
and 3
2 3 < e -
ulm.._\qulm = MW.- LM 53 _ulw: Yy . 22" T UnN
- o 3
T ohae i 2 (-0
1f we dlet A _n?._hx.: » we have
3, 2 g - ") pray
9z _.Aum.> - ..lhl :!Hw_-muvn ﬁﬁ A v”_
ol =y " _)___'-
¢ wlm: _|_I WI M\h?..._\_r:a« i hxixq-ﬁdwwn.w; ._
- _?u —.,Lu_;:a
_rmw. o ﬁ.___:: (-0 i 42 N5 5% £
. & .._ﬁ?..v J_r.:q o™ .—
= = A B AP T I~ .
s 1 [H0Ss 1L e O

=
_ -t 703 51 fwy A hlll
SEETTIC AN I 35 A e

Then, by (3.10),

or

L?:.uu }«3 M ._\..__.\1.\.@-. vw-m. Tuw.mh\ ] P

& .n__w...m. .h.ﬁ £

ny
*w- ﬁuW¢_“ :l

3

5 Jdv. - C 1

+;....;" < Hn W.!.n.%?.._.. h mmi.w A vﬁ_.:;mw.v

s
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w A, 8 }
vn~ ‘\ﬂsn A7i/3 ;) be continuoue at the z=0,

1f we require that ax)

t=0, then the constant of integration C £ (p®) must actually be
the same for all rays emanating from the origin, and hence independent

of m.o. 1f, moreover, the "atrength'" of the source as given by the

‘ol

firast term A is to be unaffected by each succeeding term, then

all the £ must vanish at the origin, so the value of the integration

constant must be zero,

Thus, h___: _:;,hn._ , whare

fnen) [ 2 m fal
£ e ST wh\.ﬂ._ua (5.38)
and f= «tp®

f0 L e [
el e poapery
- o L
1¢a=p* _.\ :_..__..: - h.w ’ e
.m:- R Rﬁ.
itz (1-p at) (5.39)
1) 1 |
f ) h_.. M-.w .“. T m 1-wp® .wﬂ * n‘.ﬁaulﬁ..ﬂuuqo&\ﬁ i
N Y9 gt wprd e
=y L. T
%n._.vl = e ) nMob.Ow

20 gt (1maptt)

i
i
i
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The remaining coefficiants £ may be casily computed by asauming

M h
h % x M ?....m. )

li-apr2)

(5.41)

(5.42)

(5.43)

(5.44)

Then we find
U.- .ﬂ?u . W - .
2. = K Haul\w.ﬂ. SRy
af " .2 g (- .x_.u.w.u...u
and
nat)
prmen 2.4 o
iv - ._. bz ﬁ u h: 11..3.2.- + F T ge_.a.
LY
£ x.. Aﬂ_._lm..d ¥ (niiyn +1 ‘Hw bepr ) wp? oz
L]
= K, ﬂw._urnnv 2hsn)? L1lll||xﬂ.
ey (1=wprt)
x h\ o 1 g.:_ T
net Nl\-nl__o?ﬁu
where )
£ HA._.I ® R:. A @her)
Ié ol
or, since K, =
Kn = <L 3060 ey
en Ir|.ll..|_3.__ bt
and
Ml el TN BYwunfrnin) ho,
f " :ii_ﬂil[l:u ! &xﬁ
: Z*(1-ap® t)
= l._.l _d.‘w.‘.ﬂ....-._‘nl..vr t
le* — wr = J Q
ﬁm. ?u
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The asymptotic expansion in (5.45) converges nowhere, except

(5.45)

trivially for t=0, but it may well be the asymptotic expansion of a

function yielding the solution. Indeed, it appears to be the

asymptotic expanaion of a function '/Z)where

s

az”
=t

7 .w.m..,v_fw

2" (5.46)

Assuming this 1s the case, we may obtain P by assuming, from

(2.7a) .
Glzt) < Alz,t;52) exp§-2y (2,4)3
with 7S o ot
Alz,t;y) = X% A(3,¢) F(7) Lo
Then in place of Au.mav‘ (3.5b) we have
J g
feh = A K5 "L 0%
where me denotes differentiation along rays.

In view of (3.5a), we can then show
-1

fOFEY =~ Y 3k

which leads to the differential equation for F:

F' + 4f! F-:0

i In order to ascertain the value of Y,

43

The solution to thias equation is

Flg)e €™ [BT.027) +¥Kl2g)] (5.47)

where (3 and Y are integration constants and T, and K, are modified

Bessel's Functions of order zero. (Whittaker & Watson, pp. 273-274),

(Erdelyi et, al. p. 5, 86). .

The asymptotic expansions of these functions are

TN Lizg) wphy [ 5 tE S e LT
“.\p m..|~“ .X‘a\N\w\v ~ ﬁ-..mv_\p mr_‘e\ Mn h,..m. th\\._vrm
S L = e (or A—> oal) .

The asymptotic expansion of (5.,47) agrees with (5.45) for
cu

arbitrery values of ), provided /3 =(4 )

ana ther .&b:.:.u.l ry condition

is needed, 1In view of the special nature of the line 2z--2%

where K hecomes negative and the diffusion equation is inapplicable,

it is reasonable to impose the boundary condition at that point,

Now, the limit

3¢
zZL-2" K5e

denotes the flux of the tracer across the line 2:-2* ; we ghall

require that this flux vanish. This implies Y0 , and the solution

is

Flg) s (ems g &% L.(25)

e s . .
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The complete expression for the tracer density becomes

lz,t50) = A ANz,0) F(g) exp[-2 pre,0]
= & T (e ,“.lwi exps-r iz g __m.

o ¢ Z- =1 =

" AT LEEeTg

or

Cletin) « X LERE(22)4] exe §-2222070 (g 4

for the exact oowcnﬁon_no the point=-source diffusion problem,

As already mentioned, (5.43) is an asymptotic expansion for
the solution (5.48), and has the advantage of being easier to
compare with nﬂm classical solution for diffusion.

Furthermore, in practical situations, the principal concern tmnw

be with regions where L << wwu and |2[<<|2"|; in short when

u .ym\ N+N\v»\u..
d <t T Vvh

Under these conditiona, the first asymptotic approximation (5.37)
will provide an adequate representation to the solution.
6., DISCUSSION

We have seen that the ray method in wn«onnw cases leads directly
to a useful approximation to the Green's function for dispersion

problems involving diffusion and advection. Indeed, it occasionally

45
leads to new exact solutions for the Green's function, By integrating
these solutions over a volume source, an approximation to the solution
of this more general problem may be obtained.

In the event that the exact solution is obtained, integration
over time will lead to the exact solution for a continuous, constant
strength point source.

In the course of this paper, the domains chosen were free of
uocs&mwwmr. other than those required by singularities in the differ=
ential equation. However, if an impedance type boundary condition
(a linear combination of C and its normal derivative are prescribed

'
for all time) is chosen, it is possible to deal with this also.
In this event, a second asymptotic expansion of the form (2.7b)
would be assumed, and the golution C would be regarded as the sum of
two expansions, The rays for the second expansion would emanate
from the boundary, and initial data for its mnvOImSHmrw_b:m transport
terms would be obtained from the boundary conditions on C. See
(Keller and Rubinow, 1960), (Lewis, 1964) for further details.

One unsettled question which may be of interest deals with the
meaning of the conserved quantity Q of equation (3.9). 1In geometrical
optica, this term is the square of the wave amplitude and related
to the energy transported along the ray, but in diffusion it {s not
clear whether Q is related to any physical quantity, It would seem

strange 1f a quantity conserved in an asymptotic approximation were

not related to a conservative physical quantity,



|
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There does not seem to be any complete answer to the question
whether the expansions derived in this paper will, in general, be
asymptotic to the solutions. The uzmwwmunmnncs for their use lies
primarily in the success with which they have been applied to problems
in other fielda. The examples shown in section 5 provide encouraging
evidence of the utility of these expansions in the present case as
well,

Of great importance in any asymptotic expansion is the problem
of the uniformity of the expansion., That is, for any given level
of accuracy, can a value of ) be chosen so the approximations are
accurate to this level for all apace and time? If not, in what
regions will this hold true? In particular, is there a nmwﬁoa.om
uniformity containing the source, either as interior or boundary

point?

. Tl -
]

Again, the theoretical background is Hmaxﬁaw.mou r“mcawwmno
answer to these questions. However, some insight may be attained
by examining the examples which we have derived,

In general, it seems that if the expansions do not truncate and
thereby yield the exact solution, they are not uniform over all
space-time. But there exist regions in which they are uniform, and

these regions in general are separated wﬂos those loci . where the

rays converge, known as ''caustics". Particular caustics include
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"point sources", and, in example C, section 5, the line z4z* =0,
which 1s a singularity of the differential equation. In the classical
applications of ray theory, the regions of uniformity are acparated
from the point source. For example, in geometrical optics and
acoustics, one is concerned with the Yeduced wave equation
on + #nv u = 0 (Jeffreys, 1962), (Friedlander and Keller, 1955),
(Keller and Rubinow, 1960), (Lewis and Keller, 1963), If the index
of refraction, k, is constant, then for spaces whose number of
apsnﬁmnmru is odd, the ray theory approximations truncate to the
exact solution, but for even dimensioned spaces, the exact solutions
have logarithmic singularities at the source, where the ray theory

s
approximations have simply poles. Thus, in this case, either the
expansion truncates to the exact solution, or it is not valid in
the near neighborhood of the mource.

By contrast, for the last example in section 5, the expansion is
uniform in regions of the type 0 < t < zﬁs+nuw mmﬂ wmw.WOSmnmnnm M,
and each of these regions include the source. This welcome feature
may be a consequence of the parabolic nature of the original equations.

Among the benefits of ray procedures are their adaptability to
machine computation, The basis for the computation of the exponential
and the transport terms is the integration of systems of ordinary
differential equations, and the literature is rife with methods, such

as the Runge-Kutta and the predictor-corrector Emm#anm. for doing

this numerically.
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The principal alternative procedure for integrating diffusion= We could either represent

ewa™ Aeatety
advection equations numerically relies in the use of a fixed grid

approximate the space-derivatives of C, use (2.5) to find the time

derivative, and use the time derivative to find the next value of C or Cec® 47 o solema e VAR 2 ata
at each point. Such a procedure has had success in a wide variety . . .
M of different problems, but has one important limitation: 1t is In the former case, A* would satisfy ; I m
unreliable in handling severe changes in gradient (Wurtele, 1961), The : m%wu g L. L wa. ﬁ K, mm. mx.bxsug
(o A A 1 2%

-

reason for this is that, when the solution undergoes rapid changes in A e
where the initial value for A" is identically unity.

higher order derivatives, more "mesh pointa" are required to resolve .
The grid system would be fixed in the ray coordinate system, since

those changes, 1In the case of point-source diffusion, typically
the time derivative is taken along the ray.

there are gradients of all sizes in any neighborhood of the source, . '
! ) In the latter case, C* would satisfy

: if the time t is sufficiently small, Indefinitely many mesh points

fuy
: 2¢’ gorte 0 3 >¢f 1 _AY > u.lﬁg
would be required, even in a scheme with variable mesh spacing. Se *w.wm_ﬂtwﬁ.gllm. % Ky i ¢ N.lmf, _Hw: 37,
: e

H

|

M

1

i

w On the other hand ray techniques would concentrate the computa= _ 3
i i ". with vanishing initial data. In either case, the solutions could
| tion points where the raya are concentrated, which in general would

be expected to be much smoother than the solution to the original
be in those areas and at those times where the solution itself under=
problem, and hence amenable to the rectangular grid approach.

goes the greatest changes, and so large gradients would be properly

’ advected. The compensating drawback is that succeeding iterations i

1

do not even theoretically lead to an exact solution.
A combination of these two procedures would then geem to be
a practical approach to machine solution of this type of problem, [ . - w
After the exponential argument Jt and the first transport term
' baou vere obtained by the procedures in this paper, the ﬂnEwwanmﬂ

term would be computed by a finite difference scheme,
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LEGENDS

Fig. 1. Rays and ray tubes in space~-time,
Fig. 2. Rays and ray tubes from an instantaneous point ao_..wom for

the case of no advection and constant diffusion coefficients, |
Fig. 3. Projections of selected rays on the x=y plane for the cage

of linear shear flow (u=by). Rays leaving the origin in

the first quadrant depart in the same direction, but at
different speeds, while those in the other quadrants have g
common speed, but depart in different directions, All the
rays curve in the direction of rotation of the main flow,
Fig. 4. Streamlines and projections of rays for the case of hyper=~ '
rown.n bilinear shear flow (weeysy, VEieh ¥, Gx0,w20),  All -

rays curve in the direction of the (constant) rotation of

the flow, asymptotically tending to parallel the,downstream

asymptotes of the streamlines,

Fig. 5. Streamlines and projections of rays for elliptic bilinear N

shear flow (uren vie, ¥ W0, 20 ). { Z
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