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. Appendix.
Here are given algebraic details to derive (2.35) v (2.43)

and (2.48) ~ (2.52).

[A-T]

To derive (2.36), it is convenient to write (2.16) in an-

other form as;
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Equation (A 1) can be verified by noting the physical meaning
of the MTD (3/3s)u, (x,t|s); which is equivalent to the usual
Lagrangian -time derivative. Equation (A 1) can, of course, be
verified also directiy from (2.16). For, by applying Gauss'

theorem, we can transform the following volume integral;
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into a surface integral over the boundary surface S (say). It
is clear that this surface integral is zero as far as the posi-
tion vector y{§3t|s} at time s (see (1.2)) of the fluid element
whose space-time trajectory passes through Qf,t) does not 1lie
on S. By putting the integral of (2.2) egual to zero and using
(2.4), we can easily obtain (A 1) from (2.16).

Hence we can write Bij in (2.19) as
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Similary, by applying Gauss' theorem, we can simplify a few

terms in (2.17a); if we write Cij(5§9ij>) as

ij(x,t;x',t‘);e <(v-terms)> + <(¥-terms)> + <é£j(x,t:X',t')>;

(A 4da)
where ézj represents the 2nd, 3rd and last terms of (2.17a) (i.
e. those which do not contain v nor ¥), (v-terms) represents the
1lst and 4th termé,-and (Y-terms) represents the 5th and 6th terms

of (2.17a), then we can write <6§S> as
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[A-TIT]

From (2.1) and (2.2), we obtain the expansions of uy and ¥

in powers of )\ as;
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The expansions of aE, ¥ and G are also obtained similary from
(2.1),(2.2), (2.12) ~ (2.15) in terms of u®(zu}(x,t)), &°° ana v°.
Here, from (2.24), ¢0 is known to be equal to a &-function, and
from (2.25} aE0=G0. Hence we can obtain expansions of u, U, éE,
Y and G in terms of EP and GO. By substituting these expansions
.into A, B and C (see f2.18),(2.32)m:(2.34),(A 3) and (A 1)), we
obtain expansions of A, B and C in terms ofvgp and B0 .

Now let us first consider about Bij i1 (B3 s Because the
.distribution over the ensemble of the initial velocity field

i

u.{x,to) is assumed to be Gaussian with zero mean, BIj(see (A 3c))

vields zero in O(A). .In O(A?);-it yields
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where e.qg. ($f*wl) means that ¥ in (A.3c) is to be replaced by
the first order term wl of (A.6) and the other u-terms in it are

to be replaced by the zeroth order term Ep Of (BeaD)a Laig.
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By using (2.24) and integrating (A.8) by parts, we obtain
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The remaining three terms of (A.7) give after substitution of (2.24)
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where ul denotes the first order term of (A.5).
The fourth order moment <u0 0u0u0> in (A.9) and (A.10) can
be expressed in terms of <u0u0> UEO, i.e. by virtue of (2.26)

in terms of UO. By transforming (A.9) and (A.10) into the wave-

vector space defined similary to (2.27), we can calculate the

) E lb(k)BbJ(k o e o

contributions of these terms to §ij(k,t,t’

By noting (2.31), we obtain
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and we have used S, (p) Spnm(P) - While, because of the

presence of the factor a/ax. in Slmn(vx)(see (A.lc) and (2.5)),

it can be shown that B (k t,t') contain the factor ki and

consequently
(k)B {k E,EY) =0 (A.12)
for Pib(5ikb = 0. Thus Bbj (k) does not contribute to ij(ﬁg

= Pib(ﬁ)Bbj(EQ" Moreover we reaﬁlly see that
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From (A.3), (A.7) ~ (A.l3), we have
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where Igj is given by (A.11).
Next let us consider about Cij in (A.4). By substituting

the primitive'expansions of u,y and @E into (A,4b), we obtain

expansions of Clj(§<a o In O(X), it gives zero. In O(Az),
it yields
(u_>u- Ly & (G +8El} +_(¢+¢l) . (A.15)

The meanings of these terms should be understood analogously to
(A.7). The third term (¢+¢l) yields after substitution of

(2.24), (cf. (A.8) and (A.9)),
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By using <u0u0> = UO and (2.31), and transforming (A.16) into

the wavevector space defined similary to (2.28), we obtain
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The first two terms of (A.15) does not contribute to C.. (k)

J'M
L TI
= Pib(k)cbcgf)PCj(Ez by the same reason as Bij does not to
B..(k). It is not difficult to see that (¥Y-terms) gives zero

alg fas
in O(A ) and to calculate (v-terms) in O(AO). Thus we obtain
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with

2l kY

Yij(k,t,t 1 k Fij{k,t,t ) + O(X), (A.18b)
I_.‘O 1

Jij(k't’t )= Jij(k,t,t ) + O(X), (A.18c)

where Jgj is given by (A.17).

The expansion of A (see (2.18)) can be obtained in a similar
manner to that of of B and C.

IAs is clear from the above calculations, we can obtain the
expansions of A, B and C in terms of QO and FO. In the same way
as for A, B and C, we can expand also Q and F in terms of QO and
FD. (These Q, F, QO and FO have respectively only two, not four,
time arguments.) By reverting these expansions of Q and F, we
obtain expansions of QO and FO in functional powers of Q and F.
By the substitutions of these expansions of QO and F° into A, B
and C obtained above, we can express A, B and C in functional

powers of Q and F.

It is worthwhile to note that in the lowest order in A
- 0_
Q" =0 and F =F.

In order to obtain the lowest order terms of X, I, Y and J in (A.

14) and (A.18), we have only to replace Q° and F° in (A.14b,c),

(A.11), (A.18b,c) and (A.1l7) by Q and F respectively. Thus we can
obtain (2.36},(2;37) with (2.39),(2.40),(2.42),(2.43). Similary
we lcan verify (2.35) with (2.38),(2.41). The structure of Hij

in (2.41) is the same as that which appears in DIA.
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Finally, (2.48b), (2.48c) with (2.50),(2.52) can be

obtained from (2.36) and (2.37) by using (2.47) and by noting
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where we have used p P (r)=k_P (r), because k=p+r and r P__(r)=0.
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As for the derivation of (2.48a) with (2.49),(2.51), the

reader may consult Leslie's book(1973).
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