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ABSTRACT

In this report, a method of numerical integration of the Navier-
Stokes equations for two-dimensional flows is described. Both steady
and time-dependent flows are considered. The method is restricted to
classes of motion defined in a rectangular domain, but by the use of
a suitable transformation this includes a large class of problems
describing the flow past cylinders in an otherwise unbounded fluid.

The formulation of the problem in terms of the stream function and
vorticity is adopted.

Numerical illustrations of the method include results for steady
flow past a circular cylinder for Revnolds numbers, based on the diameter,
up to 100. The problem of symmetrical flow past an elliptic cylinder
with the major axis in the direction of undisturbed flow is also in-
vestigated for a range of Reynolds numbers, based on the length of the
major axis, from 1 to 200. The ratio of the major to the minor axis is
taken as 5 to 1. Some of the numerical results were computed on the
CDC 3600 at the University of Wisconsin and some on the IBM 7040 at the
University of Western Ontario,

The present report is a modified and extended version of a
paper presented to the U.S. Army Numerical Analysis Conference, Fort
Monmouth, New Jersey, April 25 - 26, 1968, The numerical results
for flow past a circular cvlinder given in the previous pnaner have

been improved by more elaborate calculations.






NUMFRICAL INTEGRATION OF THE
NAVIER-STOKES EQUATIONS IN TWO DIMENSIONS
S.C.R. Dennis and Gau-Zu Chang

INTRODUCTION

The problem of integrating the Navier-Stokes equations by numerical
methods has been of interest for some time. Recently, much attention
has been concentrated on studies of time-dependent flows. One reason
is that, starting from some initial state, if a stable integration
procedure is chosen and the integrations carried on for sufficiently
long time, a steady-state solution may be approached. Another is that
time-dependent integrations may be used to predict flow configurations
which are basically unsteady for all values of the time, no matter how
large. In this report we shall start by considering the time-dependent
problem. The work is then extended to the case of steady flows.

If incompressibility of the fluid is assumed, the Navier-Stokes
equations can be written in the usual dimensionless form

L2y, )

3v/st + (Y-V)Y = —grad p + R~
where V, and p are, respectively, the dimensionless velocity vector and
the pressure, t is the time, and R is a generalized Reynolds number
based on some typical length and typical velocity in the flow field.
Definitions of these quantities in terms of dimensional quantities are given
in the Appendix. For two-dimensional flow in the (x,y)-plane, the equation

of continuity div V = O can be satisfied by introducing the dimension-

less stream function ¥(x,y,t), related to the velocity components (u,v)
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by the equations

u(x,y,t) = 3y/3y, v(x,y,t) = -3y/3x. (2)
Also, the equation which results from eliminating the pressure from
(1) can be expressed in terms of the negative dimensionless scalar
vorticity z(x,y,t), defined by ¢ = 3u/3y - 3v/3x, Thus it is found
that the equations governing these two quantities are

vZy = g, (3)
2+ Ll ZX 22 = ROV, (4)

where V2 = 32/3x2 + 32/3y%2. The necessary boundary conditions are as
follows. Where the fluid is in contact with a solid boundary designated
by the curve C,

¥ and 3¥/9n are known on C, (5)
where 3/3n is differentiation normal to C. If the flow is enclosed,
as in the case of motion in a closed cell, these are the only conditions.
If it is open, as in the case of flow past a cylinder in an unbounded
fluid, conditions at infinity must be imposed. Generally these reduce
to the fact that the asymptotic behavior of both § and ¢ is known as
infinity is approached. However, the important point in both problems
is that two conditions are prescribed for ¢ on C and none for C.

This latter feature could tend to make the integration procedure
slower than it might otherwise be. The solution of the Poisson-type
equation (3) is a boundary-value problem for a given step in time and has
to be solved by boundary-value techniques, which are sometimes slow if
iterative methods are used. The solution of equation (4) on the other
hand, is a marching (or step-by-step) problem in time. An integration

of the pair of equations proceeeds as follows., To fix ideas consider
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flow past a cylinder, in which the domain of the solution is a region
D between a closed contour C on which the conditions (5) hold and an
outer contour Cl’ on which boundary conditions f;r both ¢ and ¢ may be
supposed known. Suppose at a given time t, both £ and ¥ are known at all
points of a finite-difference grid covering D and also at all necessary
points of C and Cl’ Then the integration through time t + At consists
of the successive operations:
(i) By forward integration of equation (4), Z(x,y,t + At) is determined
from z(x,y,t) at all grid points in D and on Cl, but not on C since no
boundary condition for z is known there.
(ii) From z(x,y,t + At) at grid points within D, Y(x,y,t + At) is
determined from equation (3) as a boundary-value problem with ¥ known
on C and Cl.
(1ii) The (as yet unused) condition for 3%/3n on C is used to calculate
t(x,y,t + At) on C from computed values of v(x,y,t + At) at grid points
in the neighborhood of C. The solution at time t + At is thus completed
everywhere. Successive applications of the whole process determine
the solution at any subsequent time,

In the present report the solution of the boundary-value problem
in step (ii) of the above procedure is modified in certain classes of
problem defined in rectangular domains. Flow past a cylinder falls
into such a class, for by a suitable conformal transformation the
domain of the two-dimensional flow past cylinders of various shapes can
be mapped onto a semi-infinite rectangle. It is shown that for this

problem we can replace the boundary-value problem in step (ii) of the

above procedure by a step-by-step integration which determines the
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stream function by direct methods. In fact, equation (3) is solved
as a step-by-step problem in a single space variable.

The basis of the method for flow past cylinders is the following.
Suppose step (i) of the above procedure has been carried out. It is
shown that certain necessary conditions involving integrals of
z(x,y,t + At) evaluated throughout the region D must at this stage be
satisfied. The satisfaction of these conditions allows z(x,y,t + At)
to be determined on the boundary C entirely from the internal solution
for z(x,y,t + At) and without any determination of the internal solution
for yv(x,y,t + At). The solution for z(x,y,t + At) is then complete.
Since this function is now known on C as well as in D, it is now
possible to integrate equation (3) subject to the conditions (5) by a
step-by-step procedure in space, since sufficient boundary conditions
are given on C. This procedure determines ¥(x,y,t + At) on C1 as part
of the solution and this must come out in accordance with the known
boundary condition for ¥ on Cl’ giving an adequate check on the pro-
cedure. The method is useful in this type of problem because the

precise boundary condition for ¢ on C, at a given time is not an easy

1
one to specify.

Although most attention is given to the problem of flow past a
cylinder, the method is not restricted to this problem., As an
illustration another tyve of problem, that of flow in a closed
rectangular cell, is considered. The method is less satisfactory here
although the same objective, construction of a step-by-step integration
of equation (3), is achieved. In both classes of problems the pro-

cedure is based on the reduction of equation (3) to a set of ordinary

differential equations in one space variable. This is done by standard
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Fourier analysis. The resulting ordinary differential equations are
then solved by step-by-step methods. For flow past cylinders the range
of integration is, in theory, infinite. In the closed cell problem it
is finite. 1In both cases a special technique is used for solving these
differential equations. It is explained and illustrated by a numerical
example over a finite range of integration.

The method is subsequently extended to the equations of steady
motion. Here, 3¢/3t = 0 in equation (4) and the resulting equation is
solved as a boundary-value problem of Dirichlet type along with the
equation (3). The pair of equations (3) and (4) are solved iteratively
by a process similar to that used in the time-dependent case.

Results are given for symmetrical steady flow past a cylinder in
two separate cases. For a circular cylinder, results for Re = 5, 7,

10, 20, 40, 70 and 100, where Re is the Reynolds number based on the
diameter, have been obtained by solving the equations of steady motion.
Results for an elliptic cylinder with its major axis in the direction

of undisturbed flow and its major and minor axes in the ratio 5 to 1 have
been obtained for Re = 1 to 200 by integrating the time-dependent
equations for large enough times for a steady state to be reached. Here,
Re is the Reynolds number based on the major axis. 1In neither case is

Re the same as the generalized number R in (1), but it is related to it.
Unfortunately, it is difficult to choose the general nondimensionalization

so that R comes out exactly as desired in individual cases.

PROBLEMS CONSIDERED AND REPRESENTATION BY DIFFERENCE EQUATIONS

A typical problem of flow in a closed rectangular cavity is in-
dicated in Figure 1. At time t < 0 the walls 0X, XY, YZ and ZO of the

cavity are at rest and there is no flow. At time t > O the upper wall
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YZ is moved with constant velocity u = -1. All quantities are assumed
to be dimensionless. The Reynolds number can be based on the actual
length of one of the walls, say d, and the magnitude of the actual
velocity of the upper wall U. Thus R = Ud/v, where v is the coefficient
of kinematical viscosity. The boundary C mentioned in the introduction
is the boundary of the rectangle and the domain D its interior.

Boundary conditions for the stream function are obtained from the
equations (2). Thus for t < 0, p(x,y,t) = 0 within D and on its

boundary C. For t 2z O we have

On OX: ¢ = 3y/dy =0 )
On XY: ¥ = 3y/3x = 0
> (6)
On YZ: ¥ = 0, /3y = -1
On ZO: ¢ = 3y /3x = 0.

~

If the solution is started from the initial state of rest it may be
continued indefinitely subject to the conditions (6). For large enough
time the solution will generally tend to a steady state in which all
quantities are independent of time. Equations (6) give the boundary
conditions for the steady problem, Solutions to the time-dependent
and steady problems for various rectangles, using numerical methods,
have been given in the literature. The time~dependent problem has been
considered by Greenspan, Jain, Manohar, Noble and Sakurai [1]. Steady-
state solutions have been given by Kawaguti (2], Simuni (3], Mills [4]
and Burggraf [§]. Both types of problems have recently been considered
by Zabransky [5].

For flow past cylinders a typical problem is that of a cylinder

of infinite length initially at rest in an infinite, motionless, fluid.
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At time t = 0 it starts to move, and subsequently continues to move,
with constant velocity in a direction perpendicular to its axis. The
fluid at large enough distances is assumed to remain undisturbed.
Actually we shall adopt the following equivalent formulation. At t < o,
the cylinder and fluid are moving together with velocity u = 1 parallel
to the fixed x-axis. At t = 0 the cylinder is brought to rest and
subsequently remains at rest. The fluid at large enough distances
from the cylinder is assumed to remain undisturbed with velocity u = 1
for all t. If C denotes the contour of the cylinder and D the infinite
domain outside it then, with regard to fixed rectangular axes with
origin inside C, the boundary conditions for the stream function are
t < 0: ¥ = y throughout D
t20: ¢ =23)/on = 0 on C (7
/3y » 1, 3y/3x + 0, as x? + y2 + w,
The conditions for t > 0 are the appropriate conditions for steady flow.
We shall restrict ourselves to flows which are symmetrical about
the x-axis. Thus in practice D can be limited to the region of the
upper half-plane outside fhe upper half of C, viz. the region above
GHIJK in Figure 2. Here HIJ is the cylinder and G,K are points at
infinity on the x-axis. Consider also the curvilinear coordinate
system (a,B) shown in Figure 2. This is supposed to be derived from
the Cartesian system by a conformal transformation of the type
a + iB = F(x + iy). (8)
The transformation is chosen so that the cylinder HIJ corresponds to
o = 0 and the parts JK, GH of the x-axis correspond to B = 0, B = 7
respectively. The region D above GHIJK therefore corresponds to the

interior of the semi-infinite rectangle shown in Figure 3.
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Under the conformal transformation (S)Jequation (3) becomes
V.20 = ¢/u? (9)

and equation (4) becomes

3% _ w2y 2, 4 30 3L _ 3V 3t

5t - BRIV T+ 2 S T 38 3 - (10)
Here

v12 = 32/3a2 + 32/382
and

H2 = (3a/3x)2 + (3a/3y)2 = (38/3x)2 + (38/3y)2.
The use of transformations of this kind is well established in the
literature. Payne [7] and Kawaguti and Jain [ﬁ] have used the
particular case
F(x + iy) = log(x + iy) (11)
for which

H2 = e-—Za

(12)
in calculations of the time-dependent flow past a circular cylinder.
Here a = 0 corresponds to the cylinder x? + y2 = 1. Apelt [9] and
Keller and Takami [10] have used the same transformation in calculations
of the corresponding steady flow (37/3t = 0 in equation (10)). The
case of steady flow past a finite flat plate occupying the region
|x| < 1 of the x-axis has been considered by Janssen [}l] and by
Dennis and Dunwoody [12] using the particular case

F(x + iy) = cosh_l(x + iy)
for which

H2 = 2/(cosh2a - cos2RB).
In this case o = 0 corresponds to the plate. Other transformations of

the same type can be employed to correspond to cylinders of various

other shapes, e.g. the generalized Joukowski aerofoil.
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Finally, it remains to state boundary conditions appropriate to
the transformed (a,B)-plane of Figure 3. Obviously the first conditionm
of (7) will depend upon the particular transformation used. For the
other conditions of (7) we use the relation between the derivatives

v _ 2x 3y, 2y By

3a da 9x da 5;
(13)
_9x 3 4 9y 3y

Y _ 9x Y oy
98 9B 9x 9B 3y °
Provided that the derivatives of x and y with regard to o and B remain
finite at o« = 0, we can therefore take
t >0: 9y =203/ = 0 when o = 0. (14)
For the conditions at infinity it may be observed that for both of the
particular cases cited above we can deduce, using (13), that
t > 0: e /3 > ksinB
. (15)
e oU/3B =+ kcosB, as a > o,
Here k is a numerical constant such that k = 1 for a circular cylinder
and k = % for a flat plate. For other types of cylinders, e.g. the
Joukowski aerofoil already mentioned, the same conditions (15) hold
and we shall take (14) and (15) to be general conditions governing the
problem. As a consequence of the uniform stream condition at infinity,
it follows that for all time
> 0 asa=~> o, (16)
Lastly, since symmetrical conditions have been assumed, both § and ¢
must vanish on GH, JK (Figure 2) for all time, viz.
Y =7 =0, when B = 0O,m. (17)

Next, consider the formulation of these problems in terms of

finite differences. For the problem of flow past a cylinder we must
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limit the semi-infinite domain in Figure 3 by an artificial boundary.
This is designated by the line XY and it corresponds to the curve Cl
mentioned in the introduction. For both problems we now have a finite
rectangle OXYZ as| the domain D of the numerical solution. A typical
set of points on a rectangular grid is shown in Figure 4. The spacing
in the two directions is not assumed necessarily to be the same and
we write r* = h2/h12. Only the equations (9) and (10) need be considered.
The case H = 1 corresponds to equations (3) and (4).
If we use customary central-difference approximations to second
derivatives (see e.g. Fox[}j]), the usual approximation to equation
(9) is
Uy Uy F TR, +y,) - (2 + 2r%)y_ —hPg /H 2 = 0. (18)
1 3 2 4 o 0 o
The approximation to equation (10) depends upon whether an explicit or
implicit scheme in time is adopted. This is not of great importance in
the present report and we illustrate with the simple first-order explicit
scheme. If this scheme is adopted we can write, at the typical point O,
T (t+8t) = ¢ (t) + H RIL ae/n? (19)
o o o o
where LO is an expression in differences. For simplicity write
2\ = -R3y/38, 2u = Rdy/da, (20)
Then if, for example, the f-derivatives are expressed in central

differences, we have as an approximation

L0 = (1/+ hlo)Cl + (1 - hkO)CB

(21)
+ r*{(1 + hluo);2 + (1 - hl”o)cé} -(2+2r*)c0.

These equations are sufficient to carry out the process described

in the introduction. Stage (i) can be carried out at all internal grid
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points using (19). At boundaries where Z is known, e.g. 0X, YZ and XY
(using (16) as an approximation) in Figure 3, there exists no problem.
It clearly cannot be carried out at the becundary 0Z in Figure 3, or at
any boundary in Figure 1. Stage (ii) is carried out by solving, using
boundary-value methods, the matrix problem defined by the equations (18)
with known conditions for y on the boundaries. In the problem of closed
cell flow, ¥ = 0 on all boundaries. In the cylinder problem, ¥ = 0 on
all except XY. The condition on XY will be considered later. One
possibility is to use the first of the conditions (15) as a slope
boundary condition on XY.

Finally, in stage (iii), ¢ is calculated at any boundary where it
is not known. For example, at the boundary OZ in Figure 3, the central

difference approximation to the condition 3¢/3a = 0 gives, approximately,

¢,1=w3'
Also wo = ¢2 = ¢& =0
and hence (18) gives
_ 2 2
Co = 2H0 wlfh - (22)

which determines £ at any point on this boundary in terms of the
computed internal values of y. In this problem this is the only
boundary at which [ must be so determined. It is hardly necessary to
give the corresponding equations for finding { on the other boundaries
of Figure 1. Thus from the given initial state, and with time steps
At chosen according to some suitable stability criterion, the solution

of either problem can be continued indefinitely.

METHOD OF SOLUTION

Consider now some modifications to the method of solution of
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equation (9). The cylinder problem is particularly suitable. Since
Y =0 when B = 0 and B = 7 for all t, we may assume the Fourier
expansion

Y(a,B,t) = ) f (a,t) sin n8 (23)
n=1

satisfying these conditions. Term-by-term differentiation with regard
to B is justified (see e.g. Jeffreys and Jeffreys [14]). If we
substitute this series into (9) and multiply by the general term sin nB
and integrate from B = 0 to B = m, we obtain the equations

f'' - nzf
n

' rn(u.t), (24)

where

SIS

r (a,t) = r (¢/8%)sin ng a8, (25)
The equations hold| for n = 1,2,3,.?. and the primes denote differentiation
with regard to a, i.e. f; = Bfnfaa. Effectively we can treat these
equations as ordinary differential equations. Although the time is
present in the solutions it enters only through its presence in the
quantities rn(a,t). The integration of equations (24) is carried out

at a fixed time and hence we can think of the solutions as dependent

only on a at this fixed time.

The boundary conditions for equations (24) follow from (14) and

(15). For all values of n

En = f; = 0 when a« = 0, (26)
and, as o + «,
e *f >ké , e ¥ > ks (27)
n n n n
where Gl =1, Gn =0 (n # 1).

These conditions can now be used along with the equations (24) to

deduce a necessary condition on rn(a,t) which holds for all values of
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the time. Let

o, L}
pn(a,t) = fn + nfn. (28)
Then
d -no _ _—no
= {e pn(a,t)} = e rn(a,t)
and hence
a
e—napn(a,t) = I e-nzrn(z,t)dz, (29)
o

since D, = 0 when a = 0. Now let a + « in (29). From (27) we find
that

= -nz
J e rn(z,t)dz = 2k6n. (30)

o

Consider how the result (30) may be used in the step-by-step time
integration previously described. Let stage (i) be completed using,
say, the scheme (19). Then ¢ is known everywhere except on a = 0
and rn(a,t) can be found from (25) for corresponding values of o.
If these values are substituted into (30), using a formula of numerical
quadrature, we can determine rn(O,t) for any required value of n. 1In
practice the upper limit in the integral in (30) is replaced by the
finite value o« corresponding to the boundary XY in Figure 3.

Having found rn(O,t), the vorticity on the boundary o = 0 can be
found from the series which results from the inversion of (25), viz.

£(o,B,t) = H2 E rn(a,t) sin nR, (31)
n=1

We thus determine ¢ at a = 0 without explicitly integrating the
equations (24), i.e. stage (iii) is completed before stage (ii). The
essential point now is that since rn(a,t) is known for all stations o,
including o = 0, the equations (24) can be integrated by initial-
value techniques with (26) as initial conditions. From the computed

fn we can calculate Y(a,B,t) and stage (i) is entered again.
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The treatment of the closed cell problem is similar. In order to
preserve comparability with the analysis just given we shall take the
specific dimensions OZ = m, OX = & in Figure 1. With the change in
variables of x for o, y for B and with H = 1, equations (23), (24) and
(25) hold good., The second and last of the boundary conditions (6)
now give rise to the conditions

fn = f; = 0 when x = 0,8 (32)

for the functions fn(x,t). Equation (29) holds if we put a = x. From

(32¥; B, = 0 when x = 2 and hence
£ -nz
J e rn(z,t)dz = 0. (33)
o

Let us introduce the function
R
qn(x,t) = fn nfn. (34)
We easily deduce the equation
nx ¥ nz
e qn(x,t) = J e rn(z,t)dz, (35)
o

using the equations (24) and the condition that G = 0 when x = 0.

Finally, since 9, T 0 when x = 2, then
L nz
[ e rn(z,t)dz = 0. (36)
o

The two equations (33) and (36) serve the same purpose in this
problem as the single equation (30) in the previous problem. For given
n, each may be expressed as a formula of numerical quadrature. Then,
given rn(x,t) for every station x except x = 0 and x = £, two simultaneous
equations are obtained to determine rn(O,t) and rn(n,t). With this
additional information it is possible to solve the equations (24) using
step-by-step methods.

In practice several new points occur in this problem. One is that
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¢(x,0,t) and ¢(x,m,t) are nonzero and, further, they will be unknown

at the stage when rn(x,t) is evaluated. If conventional methods of
numerical quadrature are used to evaluate rn(x,t), no additional problem
occurs. The integrand of the integral in equation (25) is zero at the
end points and the values of C at these points do not affect the
integration. However, it is found that specialized formulae have to

be used for the integration and this does create difficulties in the
problem of flow in the closed cell. We shall return to this later.
Another point in this problem is that it is not possible to use the
equation (31) to determine { on the boundaries y = 0 and y = 7 even
when rn(x,t) is known. The series on the right does not converge to

the function on the left at these points unless { is zero there, i.e.

we get the Gibbs phenomenon. It would be surprising if it were possible
because we have not yet utilized the slope boundary conditions for

$ ony = 0,7. This point also will briefly be considered later.

NUMERICAL ANALYSIS

Two problems must be considered, the evaluation of the integral
in (25) just mentioned, and the solution of the equations (24) by step-
by-step methods. FEach presents some difficulty if treated by conven-
tional methods and we shall consider them in turn.

The problem with the integral on the right side of (25) is that
unless a very fine grid is used in the B(or y) direction the result of
conventional numerical quadrature will be inaccurate when n is large
and the periodic function has many zeros in the range. Filon [}5]
pointed this out and proposed special formulae for such cases. The
principle is based on polynomial approximation to the nonperiodic part

of the integrand only, rather than to the whole integrand. Filon gives
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details when the approximating polynomial is a parabola over three
successive equally-spaced values of the integrand. For the integral
on the right side of (25) the result, for integration over the points
2, 0, 4 shown in Figure 4, is

B
- 1
f84 tsin nR dB=E(c4cos nBa—gzcos nBz)

1
+ ——""5{(3§4- 4§0+ Cz)sin n84+(c4- 4§o+ 3;2)sin nBz}

Zhln

- ;—%;5 (¢4— 2§0+ 52)(cos HBA_ cos nBz). (37)
1

The integral over the range B = 0 to B = 7, assuming an even number of

intervals, is obtained by summing this result.*

Filon integration permits evaluation of rn(a;t) with good accuracy
when n is large but it does create the difficulty that the function
needs to be known at the end points. This presents a problem only in
the case of the closed cell flow. We shall consider this point later.

Next consider the solution of the equations (24) using step-by-step
methods. It is convenient to drop the subscripts and also to consider
the solutions as functions of a single variable, say x, i.e. we con-
sider them at fixed time. Thus we consider the single equation

£« B () (38)

and, to start, consider the solution defined in the finite range x = 0

* For further details of this result, including the error term, see
the National Bureau of Standards Handbook of Mathematical Functions
(Seventh Printing, May 1968) p. 890 together with the footnote,

p. 890. The form we give in equation (37) is equivalent to Filon's

actual form, but expressed differently.
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to x = £ with the conditions (corresponding to (32))

f(0) = £'(0) =0 (39a)

£(2)

L

£1(2)

0 (39b)
We assume r(x) to be given at all grid points on the interval x = 0

to x = £, including the end points. At this stage also we shall abandon
the notation of the points in Figure 4 and suppose that a typical grid
point in the x-direction is denoted by’xm =mh (m = 0,1,2,...) and that
fm denotes f(xm).

In theory, only the initial conditions (39a) are necessary to
integrate (38) as a step-by-step problem. However, most step-by-step
procedures applied to this problem are unsatisfactory, particularly if
n is large. For example, the direct second-order approximation using
central differences gives the approximation

2

2.2
f ...hrm+1+(2+nh)f

m+2 (40)

m+l-fm'
With some starting procedure which gives fl, equation (40) can be used
to construct an approximate solution starting from m = 0, but an
elementary error analysis (see Forsythe and Wasow [ﬁﬁ}) indicates that
the error propagation is unsatisfactory. The error at some fixed value
of x is unbounded as h » 0 for all values of n. Also, for fixed h the
error at fixed x increases rapidly with n. In the present application
it is obvious that h will remain fixed regardless of n so that this
latter property makes the use of a formula such as (40) unsuitable.

To some extent the error growth is associated with the presence of the
increasing exponential term exp(nx) in the complementary function of
(38). This term plays little part in the required solution (in the

cylinder problem it obviously, from the conditions (27), plays no part

if n > 1) so the error growth is unacceptable. For the same reason any
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attempt to express the equation (38) as two simultaneous first-order
equations with known initial conditions leads to a basically unsat-
isfactory system.
As an example, consider the two first-order equations obtained
by using the functions given by equations (28) and (34). The function
p(x) (using the notation of the present section) satisfies the ajuation
p' - mp = r(x) (41)
and q(x) satisfies
q' + nq = r(x). (42)
The initial conditions are p(0) = q(0) = 0. If we express the first
derivatives by simple forward differences, an approximation to {41)

(the Euler method) is

£
Poel (1 + nh)pm + hrm {43)

and to (42)

9el 1 - nh)qm + hrm . (44)
The error growth associated with (43) and (44) can be discussed following
the analysis given by Forsythe and Wasow. That associated with (43)
will be unacceptable, but that associated with (44) may be acceptable.
The reason is that the unwanted increasing exponential part of the
complementary function of (38) has been isolated in (41) and the de-
creasing part in (42).

In the present application, however, we not only have initial
conditions for p(x) and q(x) but also the conditions p(L) = q(2) = 0,
i.e. more conditions than are theoretically needed. With the aid of
these a satisfactory procedure can be constructed. Equation (42) is
integrated in the increasing x-direction with initial condition
q(0) = 0. Equation (41) is integrated backwards with p(%) = 0. An
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equivalent way of looking at the latter integration is to put x = & -
in (41) whence it becomes

dp/dz + np = -r(2 - z), (45)
with initial condition

p = 0 when z = 0. (46)
Equation (45) is now of the same character for increasing argument as
equation (42) and the error growth is at least tolerable.

From the functions p(x) and q(x) computed in this way, f(x) and
f'(x) are obtained from the equations

£=(p -q)/2n

(47)

f'= (p+q)/2 .
Also, a highly sensitive check on the numerical procedure can now be
made. It is that f and f' computed from (47) must now come out to be
zero (within an acceptable numerical tolerance) at both x = 0 and x =
Moreover, this cannot possibly happen unless the conditions (33) and
(36) have been correctly satisfied. The check therefore tests this in
addition to the accuracy of the step-by-step process and is a severe
one,

It is now clear from the above that we may restrict further con-
sideration to the question of constructing an approximation to equatio
(42) with the initial condition q(0) = 0. A detailed error analysis
of the approximation (44) indicates that, although the approximation
is satisfactory in a manner not shared by the approximation (43), it
cannot be expected to be effective unless nh is small compared with 1.
We certainly cannot expect to obtain an accurate solution unless this

condition is satisfied. Since h is fixed and n may be large this will
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not in general be satisfied. A method must be constructed which does
not, on the whole, lose accuracy as n increases. Such a method is
suggested by the principle of Filon quadrature.

We denote as before the value x = mh by x and the corresponding

value q(xm) by q . Equation (42) may be written

g; {enxq(x)} = ™ (x)
whence
—n(x-xm) -nx X ng
q(x) = e q, * e J e "r(g)de. (48)
X
m

If x = X + sh, this formula is a multi-step formula for the step-by-
step integration of equation (42). The integral extends over s steps
and we suppose in the usual way that r(x) is approximated by a poly-
nomial P(x) passing through some, or all, of the corresponding s+l
points and perhaps also through points outside the range. The question
of error propagation due to this approximation is now considered.
Propagation of round-off error is not explicitly considered but a very
similar analysis can be given to cover this type of error.

Let the error of the polynomial approximation at the point £ be

E(E) = r(E) — P(E). (49)

Let q*(x) satisfy (48) when r(x) is approximated by P(x) and let

e(x) = q(x) - q*(x) (50)
denote the error. Then
-n(x—xm)
e(x) = e € + T(x) , (51)
where T(x) is the truncation error defined by
x .
T(x) = e °° { e"eE(E)de. (52)
X
m
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Various estimates of T(x) can be made, for example, a crude estimate
is obtained by assuming only that r(x) is continuous on the interval
(xm,x). By definition E(x) is continuous on the same interval and thus

—n(x-xm)

T(x) = E(El) {1 -e }/n, (53)
where X < 51 < x, Thus T(x) cannot exceed the maximum error of the
interpolating polynomial for any value of n.

Only the cases s = 1, s = 2 will be considered in detail as these

are of the most value in practical integrations. The case s = 1 gives

a one-step integration. Equation (51) becomes

_ -nh
‘mtl - € n + Tm+1 * (54)
where the last term denotes T(xm+ ). The solution is
m
£ MmN L. + Sm s (55)
where
-nh
y=e
}
S = Y T
mo j
If‘? is the magnitude of the numerically greatest of Tj then
s | < T - yH/a - . (56)

From equation (55) we have the following simple properties of
error propagation. For given h, y < 1 and the error after m steps is
bounded as m + ., Moreover, as h -~ 0 the error at a fixed value
x = mh remains bounded since Ym > e ™, For convergence, Suppose X
is the initial point x = 0 and that the initial condition (actually
q = 0 in the present application) has been calculated exactly. Then
€, = 0 and convergence is established if Sm + 0 as h » 0 for fixed

X = mh. Clearly Sm + 0 if T > 0. From (53), for all m,
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Tm+l " hE(gl)

and E(El) certainly remains bounded. Thus T-o0. Actually, as is well
known, if P(x) passes through the j + 1 points

Rys Xygqs oovs xi+j

and r(x) possesses continuous derivatives up to order j+1 on an interval
which contains these points and the argument £, then

B(E) = (& = %) (€ = %006 - x O TPy 67
41

where n lies on the given interval, 1In this case E(El) = 0(h ) as
h = 0.
The formula for q* for the one-step case is
X
-nh -nx m+l né
* = * m+
9okl T¢ %5 + e 1 Jx e "P(g)dE. (58)
m

The simplest form for P(£) is to take it constant, i.e.
P(E) = r(xm) =T .
This corresponds directly to the Euler formula in the approach using
standard difference methods. The approximation obtained from (58) is
q;+l = e—nhqﬁ + rm(l - ednh)/n . (59)

If we assume the expression (57) for the error, with i =m and j = 0

in this case, substitution in (52) yields

-nx X
_ mtl |Tmtl, ' nf
Tm+l = e [x (€3 xm)r (n) e ~dg. (60)
m
If we apply the mean value theorem then
-nx X
_ m+l _, m+l, . ng
T4y = ¢ r'(n,) Jx (€ - x )e "dE, (61)
m

where X <n, <% . We can deal with (61) in two ways, firstly by

1 m+1l

evaluation of the integral, which yields

r'(n,)
_ 1 -nh
T, =—— (- - ™m . (62)
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Alternatively, we can again employ the mean value theorem to give

e, = )
-~ %-e 1 wtl hzr'(nl) . (63)

where x < El < The two forms clearly become equivalent if, for

X+l
fixed n, h = 0. However, in general they display different properties.
Equation (62) exhibits a tendency for the truncation error to decrease
with n. Equation (63) indicates that, regardless of n, the truncation
cannot exceed hzr'(nl)fz, which is what it would be if the Euler
method were applied to integrate the basic differential equation (42)
with n = 0,

A similar situation exists if P(£) is taken as the straight line

joining x tox The truncation error is then

m+1"

(€ - x)(€ - x_ )r"(n)e"Cae

r <Ll Tl [
mtl - 27 ©

X
m
and it is easily shown that Tm+l cannot exceed in magnitude the term

-h3r"(n1)/12, where X, < np <X This term gives the truncation

m+l”
error when trapezoidal integration is applied to the special case n = 0
of equation (42). We can clearly write down a formula of similar type
for the truncation error when P(£) is a polynomial of any degree. How-
ever, the general investigation of this error is then more difficult.
In particular, the term E(&) changes sign over the range of integration
and the process of getting simple estimates of the kind just given is
more involved. Although the point has not been investigated fully it
does seem to be possible, following methods used by Steffensen [}Z]

in the theory of numerical quadrature, to establish the following result.

For any given polynomial approximation P(£) to r(£) in (48), the

magnitude of the truncation error (52) does not exceed the magnitude
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of the corresponding truncation of numerical quadrature when n = 0.

We turn finally to the actual formulae uti}ized in the numerical
work of this study. Two formulae have been used, the first a one-step
formula to effect the first step of the integration from the initial
point X to the point Xy but using parabolic approximation to r(x)

over the points X s X The second formula used was the two-step

1’ xzt
formula obtained by putting x = X + 2h in (48) and using parabolic

approximation for r(x) over the successive points X s X The

m+1’ xm+2'

appropriate formulae for q* are as follows. TFor the first of these two

1 1
% = vagk + = - - i T o - -
q*; = vq¥ i (rl Yro) ;;—E4r2 r Y(4r1 3r0 rz)}

t—m (- b T ) - Y),  (64)

h'n

where y is as previously defined. Tor the second

2
1 2 4 3 2
% Sygk 4 = - W - _ -3 -
Gn+2 \qu + n(rm+2 ¥ rm) 2hn2 Grm+2 4rm+1+rm) Y (Arm+l 3rm rm+2)}

1 2
* 223 (e =20 gt (1 = YD) (65)

The resemblance between (65) and the Filon quadrature formula (37) is
obvious.

The question of error propagation for two-step formulae such as
(65) may be considered in a similar manner to that in the one-step

case. The error equation is

2
w2 =Y fn t T (662
where Tm+2 is given by putting x = X 42 in (52). Actually the only

new point is that (66) has two independent solutions, one for even
values of m generating from the initial value & and the other for odd

values of m generating from ¢ The general error propagation pro-

1°
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perties of these two solutions are essentially similar to those dis-
cussed in the one-step case and need not be considered further. 1In

practice, €. will be determined by the starting approximation to q.

1
This can be obtained using any one-step formula, such as (64).
Generalization of these results to the multi-step case is obvious

and we shall give no further discussion of this.

The truncation error Tl in (64) is obtained by putting m = 0,

X in the formula (52). Also E(£) is given by (57) with i = 0,

L §

2. The polynomial part of E(£) does not change sign over the range

3

of integration so it is easy to deduce that T, = en(glph)har'"(nl)/Zé,

1
where 0 < El <hand 0 < n, < 2h, For the two-step formula (65),

1
E(f) is given by putting i =m, j = 2 in (57). In this case the
polynomial part of E(£) does change sign over the range of integration.
This case has not been investigated fully but, as previously noted, it
is believed that the truncation can be shown to be not greater in
magnitude than that obtained by putting n = 0 in (52). This would
give the truncation not greater in magnitude than that of the Simpson
formula applied to the function r(x) over the same interval.

Finally some results are given of a specific numerical illustration
of the whole computational procedure of solving equation (38) subject
to the boundary conditions (39a) and (39b). Some computations were
carried out to test the method. 1In this test r(x) was taken to be

r(x) = 100 + ae-x/2 + be_SXIz,
with a(n) and b(n) chosen to satisfy the necessary conditions (33) and
(36). The range of integration was taken as £ = 1. Equation (42) was

integrated in the positive x-direction and equation (41) in the negative
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x-direction as already described. Both integrations were carried out
using formulae of type (64) and (65), equation (64) being used for the
first step and (65) being used to continue the integration.
Computations were carried out for integer values of n fromn =1
to n = 20. Tor each case two approximate solutions were obtained using
h = 0.1, 0.05 respectively and the results compared with the known
exact solution. This comparison was found to be extremely satisfactory.
In Table 1 some comparisons are given for one value only, the value
£(0.5), but on the whole the result is representative of those obtained

over the complete range. The values are given in floating decimal form.

n Exact h=20.1 h = 0.05

1 1.87926E-01  1.87641E-01  1.87925E-01
5 1.19699E-01  1.19699E-01  1.19699E-01
10 5.65582E-02  5.65622E-02  5.65584E-02
15  3.04646E-02  3.04671E-02  3.04647E-02
20  1.86811E-02  1.86827E-02 1.86811E-02

TABLE 1,

Values of £(0.5)

The main evidence of this table is that for a given grid size the
approximations maintain their accuracy as n increases. This is in
agreement with the theory and confirms the essential object of the
method. A few other features of the numerical solutions obtained may
be summarized as follows. For the grid size h = 0.05, the solutions
computed using the step-by-step process agree with those computed from
the exact solution to 5 or 6 decimal places at every grid point for
every value of n fromn = 1 to n = 20. In this case also, the check

that £(0) and f(1) should both come out zero was satisfied to at least
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a tolerance of 10_5, and more often .‘LO'_6 or 10_7. For the grid size
h = 0.1 this tolerance was rather greater, varying from 10_4 to 10_6.
In both cases this check improves as n increases.

Finally, some discussion of the solution of (38) must be given in
the case which corresponds to flow past a cylinder. Although, in
practice, the range of integration is still a finite number % (correspond-
ing to the imposed boundary XY in Figure 3), in theory this range is
infinite in this problem. The new point is that the boundary conditions
(39b) are not now available. Although in theory only the conditions
(39a) are required to solve the step-by-step problem, some replacement
for (39b) must obviously be made if the methods described above are to
be used. No new problem exists for the integration of (42) since the
initial condition g(0) = 0 is still known. We do, however, require
to know p(%) in order to initiate the backward integration of (41).

To consider the problem properly we should first examine the
nature of the time-dependent solution of (10) for large o in order to
ensure that the determination of rn(a,t) from (25) is such that, as
a + o, the integral in the condition (30) converges at its upper limit.
This would establish that the problem is properly posed and also provide
information on the assumption to be made for p(2). The investigation
is difficult for the time-dependent problem but it can be carried out
for steady motion, and the results give some idea of what to assume
for time-dependent flow. We shall therefore consider the solution of

the steady-state problem before considering this point.
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SOLUTION OF THE STEADY-STATE EQUATIONS

If we put 3z/3t = 0 in equation (10) it becomes
7% = RGE 2 - 2L 35, (67)

In order to determine a steady flow configuration it is necessary to
obtain a solution £(a,B) of this equation together with a solution
V(a,B) of equation (9). The steady-state boundary conditions are
given by (6) for flow in a rectangular cell and by equations (14), (15),
(16) and (17) in the case of flow past a cylinder. All time-dependent
quantities which have previously been defined are now independent of
time and we can use the same notation, e.g. rn(a) now defines the left
side of (25) when Z(a,B) is implied in the right side.

The central-difference approximation to (67) at the typical point

0 of Figure 4 is Lo = 0, viz,

(1 +hr)z, + (L - hA )z
0771, 0-?3 (68)

+ r*{(1 + hyugle, + (1 - hluo)ga}_ (2+2r*);0 = 0.
The only essentially new point in the steady-state problem is that the
set of equations (68) now defines a problem of boundary-value type
for determining ¢ within the region OXYZ of Figure 1 or Figure 3 rather
than the step-by-step problem given by (19). In order to solve these
equations it is necessary to specify a boundary condition for ¢ at all
points of the boundary OXYZ. Except at points where a specific
condition is given, e.g. on OX, XY and YZ in Figure 3 but on none of
the boundaries in Figure 1, boundary values of ¢ must be calculated as
part of an iterative scheme of solving the problem. The scheme is very
similar to that employed in the time-dependent case and consists of

obtaining a sequence of iterates w(m)(u,B), L(m)(a,s), (m = 1,2,3,4 e4)
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which converge to numerical solutions of (9) and (67) and satisfy all
the boundary conditionms.

Following the procedure for the time-dependent case, the present
method of solution employs the equations (68) to approximate equation
(67), while the Poisson equation (9) is solved by the step-by-step method
already described. Consider the problem of flow past a cylinder. The
iterative procedure is as follows. A given iterate r(c,B) (omitting
the superscript for convenience) is obtained by solving the matrix
problem (68) for grid points internal to OXYZ. Approximations to the
boundary values £(0,B) on 0Z required for this calculation have already
been determined, and the necessary values of )\ and u have been calculated
from the most recent iterate for . From the new values of ¢ it is now
possible to calculate rn(u) from (25) for all grid lines parallel to
0Z and for any value of n. This permits the calculation of new estimates
of rn(O) from (30) or, more precisely (since the integration range is
finite in practice), from

o
m -NnzZ -
Jo e rn(z)dz = 2k6n. (69)

The calculation can be expressed approximately in the form

m
- _ -njh 2
hw r (0) = 2k§_ - h jzl wsoe r (3h) . (70)

Here the factors wj are the weighting coefficients of the quadrature
formula which is used to approximate the integral and &ﬁ = mh,correspond-
ing to the boundary XY.

The calculated values of rn(O) are used, through (31), to determine
boundary values of £ on OZ for the next iterate. Also the step-by-step

integration of the equations (24) can be carried out to determine,
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through the series (23), the iterate for y(a,B). A complete cycle of
processes has now been carried out and this can be repeated until con-
vergence. As in the time-dependent case, it may be noted that the
calculation of boundary values for f is carried out independently from
the determination of the iterate for y. Thus the method again differs
from the usual finite-difference procedure in which the equations (18)
are used to determine ¥ and the new boundary condition for f calculated
from (22), in which case the internal solution for y must be known in
order to calculate ¢ on 0Z. To some extent the independence of the
calculation of the new boundary condition for ¢ and the iterate for ¥
adds flexibility to the iterative method of solution, but we shall not
elaborate on this point.

It has been noted in the literature (see, for example, Thom and
Apelt [18]) that the process of solving the equations (18) and (68)
iteratively with the boundary condition for g calculated by (22) can

(m)(u,B), with boundary condition

be diwvergent, Suppose an iterate ¢
Q(m)(O,B) on OZ, gives rise to a new iterate for y(a,B) from which a
new boundary condition, say £*(0,B), is calculated using (22).
Divergence of the repeated iterations can be caused if z*(0,B) is

GW+1)(O,B) for the next iterate. It

taken as the boundary condition ¢
is therefore customary to calculate the new boundary condition from the
relation

™) (0,8) = «zx(0,8) + (1-)z™ (0,8), (71)
where 0 < x < 1, and it is usually possible to ensure convergence of

the iterations by taking x small enough. The process, frequently

termed smoothing, can be used equally well in the present method of
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solution. Various elaborations of this process and other devices for
accelerating convergence have been described in the literature. Many
are considered in references already cited. Greenspan [}9] has also
suggested some techniques in an investigation of the steady flow in a
rectangular cavity. Many of these devices are applicable to the present
method.

In order to investigate the convergence of the integral in (30)
it is necessary to obtain the form of the solution of (67) for large
a. From the details it is possible to determine an assumption for p(%)
which may be applied on the boundary XY. It is also possible to obtain
a very much better approximation to a boundary condition for ¢ on XY
than the very crude assumption that (16) holds at the finite distance
@ =a. The solution for large o is found by linearizing equation (67)
with the boundary conditions (15) satisfied by y as a + « , This is
the Oseen method of linearization (see Lamb [Zd]).

If the boundary conditions (15) for ¢ are substituted in (67) it
assumes the limiting form
Vi; = Rke”(cosB %& - sinB %%) . (72)
valid for large a. A complete solution of this equation which satisfies
the necessary conditions that £ = 0 when B = 0 and. 8 = 7 can be verified
to be

52, B) = eX%9%B T 4 % ()sin B, (73)
m=l mm

where
o
x(a) = Rke /2
and Km is the modified Bessel function of the second kind. The constants
Am(m = 1,2,3,...) are arbitrary. They cannot be determined explicitly
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without further information, e.g. a knowledge of the complete solution
of (67) in a domain which overlaps the domain of validity of (73).
Since x is large when o is large and the leading term of the
asymptotic expansion of Km(x) for large y is
K GO v (n/20) %%,

then for large a equation (73) can be replaced by

- |
z(x,B) v G(B)X * exp{x(cost - 1)}, (74)
where G(B) is a function of B alone given by
G(B) = ('!T/Z)E5 ) A sin m8. (75)
m=1

Equation (74) gives the character of the steady-state vorticity dis-
tribution for large a. It is exponentially small except in a region

lying between B = 0 and the curve

2

x(1 - cosB) = Bo

where Bo is a number whose choice devends upon how small ¢ is required
to be on the curve in order to be counted as negligible. Since this
equation clearly makes B small for large X, we can replace it approx-
imately by the equation
8 = B (2/%)". (76)

Consider now the determination of rn(a) from (25) when a is large.
The region within which the vorticity is significant is limited by the
curve (76) for which B decreases proportionately to x_% as a * =,
Suppose x is taken large enough so that the expressions sin nB, cosB - 1
and sin mf which occur, respectively, in equations (25), (74) and (75)
can be replaced by their leading terms for small RB. It should be borne

in mind that we are only in practice concerned with a finite number of

terms of the various series invelved so that the question of making
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this approximation for large values of m and n, for which y would have
to be very large, is not really relevant. Let us also make the change
of variable

g = (2/y) 7%,
so that the region of significant vorticity lies between © = 0 and

8 = Bo* Then as ¢ + = equation (25) can be replaced by

o 2
r (a) ~ ——-l”‘s, [ 1 %6729 ho. (77)
n 2
x'm ‘o
In this expression
S = z mAm

m=1
and is assumed to converge. In practice it is approximated by a finite
number of terms,

The quantity H in (77) is the asymptotic form as o -+ o of the
corresponding quantity in (25). For the case of a circular or elliptic
cylinder

w7, kleza, as g > =,
where kl is a constant. This behavior is standard for the type of trans-
formation considered here. It holds, for example, in the case of the
generalized Joukowski aerofoil. If we assume this result to be
generally true, substitution in (77) gives finally

rn(a) > nNc, 88 g +> (78)
where

c = 4kIS/R2k2
and is definite constant for a given cylinder shape at a given
Reynolds number. The result (78) was obtained in the case of a flat
plate using somewhat similar methods by Dennis and Dunwoody and it
was shown that the constant c can be expressed in terms of the total

drag force exerted by the fluid on the plate. A similar result can

be obtained in the more general case considered here,
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The limit (78) indicates that, for fixed n, the integral in the
condition (30) converges at its upper limit. It also indicates
ultimate divergence of the series (31) as o + =, but the practical
situation for large but finite o is that (31) converges very slowly.
In fact, the limit nc for rn(a) is approached more slowly as n increases,
corresponding to the fact that the replacement of sin nB by nB in (25)
is valid only for small nB, i.e. o must be larger as n increases, since the
maximum B is given by (76). The slow convergence does not seriously
affect the numerical process since (31) is used only at o = 0, where the
convergence is quite satisfactory in numerical examples.

In order to consider the boundary condition to be applied on XY
in Figure 3 let a = x, to keep the notation 6f the previous section,
and suppose that x = 2 corresponds to XY. It may be recalled that
there is no new problem in solving (42) since the condition q(0) = 0
still applies. In view of (78) the numerical procedure of solving
(42) will, if continued for large enough x, determine a solution in
which q(x) + ¢ as x > », To deal with equation (41), we multiply by e ¥

and integrate from x = £ to x = «®, Thus

2ks_ - e-nlp(l) = [ e"nxr(x)dx ~
L. )
where Gn has the meaning defined in (27). If we integrate the right

side by parts and rearrange, then

nt _ r(e) 1r X)Ly ax (%)

p(2) = 2ké e - -~ .
The last term on the right side of (79) can be written as -r'(E)/nz,
where £ > 2. By equation (78), this term may be neglected if % is large

enough, giving the approximation

nt

p(2) = 2k§ e - r(2)/n. (80)
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To some extent the approximation can be tested by an estimation of the
error term, taking £ = 2 and calculating r'(2) using numerical differ-
entiation. If necessary the process can be continued by further
integration of the last term on the right side of (79), e.g.

nl
p(R) = 2k6ne

- r()/n - ' () /n?,

the error term now being - r“(&l)fn3, where El > 2. In the actual
calculations which have been carried out the approximation (80) has been
found to be satisfactory for the following reason.

The reason is related to the question of approximating the infinite
integral in (30) and we shall deal with this latter point first. Be-
cause of the nature of the limit (?8))some error may be incurred by
replacing the upper limit by the finite number £, particularly for
small values of n, The approximation can be improved by assuming that
2 has been taken large enough so that (78) is a good approximation for
a 2 &, at least for the smaller values of n. If we make this approx-
imation in the integral, we can replace the condition (30) by the
condition

. -nz -n

[ e r(z)dz = 21(-5n - ce ; (81)
The constant c is detegmined from the relation

e = r()/n.
Consider next the approximation to p(f). One of the important require-
ments of the backward integration of (41) is that p(x) shall come out
zero at x = 0. If we multiply (41) by e ™ as before and integrate
from x = 0 to x = 2, we have

p(R)e—n£ - p(0) = [2 e-nzr(z)dz 5

o
The integral on the right side may now be replaced by the right side
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of (81). It is found that the necessary condition for p(0) = 0 is
p(e) = 2k6nenE - c.

This is exactly consistent with the approximation (80) and it is

extremely satisfactory that the improved approximation to the infinite

integral in (30) together with the use of this approximation to p(2)

shall lead to the satisfaction of the necessary condition p(0) = 0.

In the numerical work it has been found that the condition p(0) =0

is satisfied to very good precision using the above scheme.

The nature of the expression (74) which approximates z(a,B8) for
large a indicates a very slow decay of vorticity in the wake of the
cylinder, i.e. in the region for which B is less than the value given
by the curve (76), Within this region the approximation ¢ = 0 on the
boundary a = ans i.e. the boundary which must necessarily be imposed
in a numerical calculation, will be a poor approximation., If it is
assumed that o is taken large enough for (74) to be a reasonable
approximation for a > a » We can utilize this expression to provide
a boundary condition on o = o This is done by assuming (74) to be
valid on the successive grid lines a = e and a = o + h. The unknown
function G(B) is then eliminated from the two resulting equationms,
which gives the approximation

t(a + h,B) = z(e ,8) exp{(x_ ;- xp) (cos B - 1) - h/2}. (82)
Here X denotes the value of y at o = a and X1 that at a = um+ h;

Equation (82) is used as a boundary condition in conjunction with
the set of equations (68). Once a value for o has been assigned, the
exponential on the right side can be calculated for all values of B8
and the equation is similar to a gradient boundary condition. It may
be used, following the usual manner for a gradient-type condition, to
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eliminate values of [ external to 0XYZ from the equations (68). The
values of ¢ at grid noints on a = a are determined as part of the
solution. The treatment given here is similar in principle to that
given in a recent paper by Dennis, Hudson and Smith [21] in a problem
of steady heat convection.

Keller and Takami, in their investigation of the steady flow past
a circular cylinder, use a procedure in which the solution of Imai [22],
valid for large a, is utilized to calculate approximate boundary
values for both ¢ and ¢ on o = @ . In order to obtain explicit values,
the coefficient CD corresponding to the drag exerted by the fluid on
the cylinder must be known., This is not known, but an approximation
to it can be obtained corresponding to any approximation to 7 and Y
which has been obtained within OXYZ. Keller and Takami's procedure
therefore uses Imai's solution to calculate, from an approximation to
CD, approximations to  and ¢y on a = o The difference equations
(18) and (68) are then solved within O0XYZ. This leads to a better
estimate of CD and the process is then repeated iteratively until
convergence, It may be noted that a similar explicit procedure for

calculating c(am,s) according to (74) could be adopted in the present

method. For large o, equation (74) is equivalent to

2
AT & il (83)

%S and S, © are as previously defined. The comstant S

where A =7
can be expressed in terms of CD by considering the flux of momentum
across a large enough contour surrounding the cylinder. However, the

use of (74) in the form (82) is more satisfactory since it does not

require explicit calculation of CD.
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Although Imai's solution represents a higher order approximation
to the Navier-Stokes equations than that given by the Oseen theory, the
question of whether its use as a boundary condition in the present case
will lead to a more accurate solution is worth considering. For large
a the vorticity is significant only within the boundary defined by
(76). Within this boundary it may be assumed to be given approximately
by equation (83). Let us examine the relative magnitudes of the terms
in equation (72) within this region, i.e. for fixed © and large a.

From (83) we obtain the results (noting that 6 is a function of both

a and B)

2
9z/da v - AG(BZ %)X_le_g

1 2 (84)

/38 v AL - 20%)e™Y
Within the given region the terms cosB and sinB may be replaced by the
values 1 and B respectively. Thus for fixed © and as a + @, the two
terms in the bracket on the right side of (72) each tend to zero like
xil and the whole right side tends to a function of © alone. By
further differentiation of the expressions (84) it is found that
32¢/382 tends to a function of © alone as « + ®, but that 8%z/3a0? tends
to zero like x-l.

The situation for large o is therefore that three terms in equation
(72) balance and that the fourth, the term 32z/3a2, tends to zero.
Equation (72) therefore becomes effectively a first-order equation in
the o-direction. Since it is the limit equation of (67) for large o,
the same tendency is exhibited by the latter equation. Its numerical
solution is therefore relatively insensitive to the downstream boundary

condition and is almost 2 continuation problem in the a-direction. The

lack of dependence of the numerical solution on the downstream boundary

<28 #859



condition has been observed in numerical examples solved by present
methods.

A similar situation occurs in the numerical determination of the
stream function ¥ as a > «». In numerical studies it is quite customary
to introduce a perturbation stream function which measures the differ-
ence between ¥ and the stream function of the potential flow past the
cylinder. For large a the potential flow must satisfy the conditions (15),
and it is sufficient for present purposes to define a perturbation ¥
by the equation

¥ = ¥ + ke"sinB. (85)

Obviously, Y satisfies the same equation (9) as ¥. For large o(

we assume, as before, that H-2 vk eza and also that ¢ is given by (83).

1
In this case Y satisfies the equation
2
v, = (4ak /R x@e ™ (86)

as a +» «, Within the region of significant vorticity B is small for
fixed 8, and 82/382 = (x/2)32/392. A solution of (86), valid within
this region, can now be obtained by balancing the term 52¥/382 with the
term on the right side, so that Y satisfies
5 2 2. -g? )

32v/a62 = (8ak, /R"k™)Be "~ . (87)
The solution must satisfy ¥ = 0 when 6 = 0. Outside the vorticity
wake, where ¢ = 0, it must match the harmonic function B(1l - B8/w) which
satisfies the other required condition that ¥ = 0 when B = . The
necessary solution of (87) is

5.7 [0 =57
y =(—4Akl/R k )J e © dz. (88)
o

The constant A can be expressed in terms of B, but there is no need to

give further details,
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The variable 6 is a function of both o and B. Differentiation of (88)
indicates that, in the region of significant vorticity, 32Y/3a2 tends
to a function of © alone and 32¥/3B2 tends to infinity like x, as a » <,
Hence 32¥/3a? is asymptotically small with regard to 32¥/382, verifying
that (87) is a valid approximation to (86) for large o. The resulting
solution (88) is equivalent, in the present coordinate system, to the
leading term of Imai's solution. However, the important point is that
(87) requires no boundary condition in the a-direction. The approx-
imation to ¥ for large o is generated by integration along grid lines
parallel to a = 0 from a knowledge of 7 on these lines. This is exactly
consistent with the approximation (80) to p(2). The term involving en£
which is present when n = 1 corresponds to the effect of the potential
term on the right side of (85), while the term involving r(%) depends
only on an integration in the B-direction.

Although the present discussion is appropriate only to the steady-
state problem, the approximations to the outer boundary conditions can
be extended intuitively to the time-dependent case. In the early
stages of the motion, although 3z/3t in equation (10) is large near
the cylinder, very little diffusion of vorticity into the outer region
has taken place and the external flow is still approximately potential.
The approximations (80) and (82) take some account of this diffusion
and are probably better than the assumption of potential flow on o = a -
Moreover as the wake builds up it does so, although at first its
strength is weak, in the same basic form indicated by equation (74) with
which the approximations (80) and (82) are consistent. This feature,

together with the fact that the procedure described ensures that p(0,t)=0,
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tends to justify its use for all values of the time.

The present section has been centered on the problem of flow past
cylinders. In the problem of flow in a rectangular cell there is no
difficulty in specification of the boundary conditions, but certain
other difficulties arise in the present method of solution. One is
the point already mentioned that if Filon quadrature is used to evaluate
rn from (25), values of [ must be known at the ends of the range of
integration. This presents no real problem for the steady-state
integrations. Here a sequence of iterates t(m)(a,B) (m=1,2,3,...)
is determined and the most recently available values of [ may be used
to define the integrand on the right side of (25). The second difficulty,
also previously mentioned, is that even when r has been determined for
sufficient n and for all grid lines in 0 < x < &, the series (31) cannot
be used to calculate £ on y = 0,7 although it can be used on x = 0,8
if 0 <y < 7. The simplest way out of this difficulty is to use the
series (23) to calculate ¢ at all grid points neighboring the boundary
OXYZ in Figure 1 and then calculate Z on this boundary using the
appropriate finite-difference relations of type (22). All the boundary
conditions are satisfied and the explicit integration of the Poisson
equation is still achieved.

This latter method can also be used to calculate the boundary
vorticity in the time-dependent case, but a slight difficulty still
exists in this problem. Suppose the solution has been completed every-
where through time t. Equation (19) then gives go(t + At) at every
internal grid point but not on y = O,7. It is needed on these boundaries
if rn(x,t + At) is to be obtained by Filon quadrature. Whereas in the

steady case boundary values from the previous iterate can be used’since

#859 S I



we are interested only in the final limit solution, in this case it is
not consistent to use values of z(x,0,t), z(x,m,t) in the calculation
if the actual time development of the solution is required. However,
At is usually small to ensure a stable integration, so the use of
t(x,0,t) and z(x,m,t) will give a good approximation to rn(x,t + At).
The equations (24) can then be solved and a good approximation to
V(x,y,t + At) obtained at all internal grid points from (23). This
approximation may then be introduced into the difference equations (18)
and imprdved, if necessary, using one of the usual iterative methods.
From the solution which results, f at time t + At may be calculated on
the boundaries from relations of type (22). The iterative solution of
the Poisson equation (3) is not entirely eliminated in this case, but
the time spent on it is reduced.

In subsequent sections some calculated results for flow past
cylinders are given. Some have been obtained by solving the equations
of steady motion and some by time-dependent integrations, although in
the latter case only the final steady results to which the solutions
converge are given. In the time-dependent problem an impulsive start
to the motion was employed. There are a number of points of interest
to be considered in this problem and a full discussion will be given in
a later report. One point only is considered here, the question of how

the motion is started in practice.

INITIAL MOTION FOR FLOW PAST CYLINDERS

The initial conditions in this problem require further discussion.
The first condition of (7) for t < 0 is not really relevant to the
problem. At the instant t = 0 at which the cylinder is brought to rest

relative to the fluid, an infinitesimally thin boundary layer (see
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Schlichting [23]) is formed at the surface of the cylinder. At this
instant the conditions ¢ = 39/3a = 0 apply at the cylinder surface and
the solution for ¢ within the boundary layer may be obtained by solving
the time-dependent boundary-layer equations. Outside the boundary
layer the stream function may be taken as that for the potential flow
past the cylinder. For small values of t the thickness of the boundary
layer grows proportionately to (t/R)%. The initial variation of
vorticity on the surface of the cylinder is proportional to (t/R)-%.
Thus at t = 0 an infinitesimally thin ring of vorticity of infinite
magnitude is generated at the surface of the cylinder.

To start an integration it is necessary to postulate initial values
for £ on the boundary 0Z. This is usually done by assuming an initial
distribution ¢(a,B,0), e.g. that of potential flow past the cylinder,
and calculating z on OZ from (22). For finite h this necessarily
gives a finite starting distribution £(0,B8,0) for the vorticity which
cannot be in agreement with the correct solution. The point has been
noted by Payne and more recently by Ingham [?&]. Actually, it can be
shown that not only is the initial calculation of z from (22) unsatis-
factory, but also that it is incorrect to assume any initial distribution
of ¥ in equation (10) other than that consistent with the solution in-
side the boundary layer.

The boundary-layer solution indicates that the term 32¢/982 in (10)
is initially small compared with 32z/3a?. Also the convection terms
on the right side of (10) are initially small since ¢ = 3y/3a = 0 at
the cylinder surface. The initial solution of (10) comes from the

balance of terms
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3 -1 2 32
3% o Ho EE% ? (89)

where Ho is the value of H at the cylinder surface. This is a function

of B alone and hence if we put t = RT/Hi then (89) becomes

ac _ 32
3£'= SE% . (90)

A solution of (90) can now be found in the form

T % (2, 8)

c

where

o= ZZT!i

and F(z,B) satisfies the equation

2

2F 2, 2 L oF =0,
2 9z

dz

A solution of this equation which satisfies the condition that
r*+*0as z+=1is F = e_zz. However, ¢ must vanish on 8 = 0,7. The
function

F(z,B) = e_zzsin nB
satisfies the equation for all values of n and hence a complete solution

for ¢ can be expressed in the form

- 2
E Bne_z sin nB, (91)
-l

1
~%

L =T

where the Bn are constants to be determined.

The constants Bn are found from (30), which is an exact condition
for the problem. Firstly, rn(u,t) is found from (25). The result
depends upon the specific function of B which defines Ho in a given
case, but, having found rn(a,t), substitution in (30) gives a set of
linear algebraic equations to determine Bn' For example, for a circular
cylinder, H0 = 1 and ;

rn(a,t) = BnT'%e_a IAT.
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It follows from (30) that

Bn = 0) ('ﬂ = 233349”-)-
The condition for n = 1 determines Bl’ with k = 1 in this case. For
small times, the boundary layer is confined to a small thickness in
a. The exponential in (30) can be replaced by unity and we find that
%

B, = 2/x

1 , and the initial solution for the vorticity is

L = ZCR/Kt)% exp(—Razfét)sinB. (92)
Obviously, it is impossible to specify f numerically at t = 0.

Moreover, the vorticity distribution given by (92) cannot be represented
adequately for small times by any finite-difference scheme. Ingham's
work on the circular cylinder indicates that the most satisfactory pro-
cedure is to start the integration using the boundary-layer solution
and continue it using numerical methods. The stream function y(2,8,t)
in the boundary layer for small t can be obtained from (9). Initially
32y/382 is small compared with Bzw/Baz and, for small a, H can be
approximated by HO. The initial stream function satisfies

3%y _ 2
Sar - B,

and if the expression (91) for r is substituted, the equation can be
integrated twice with regard to a subject to the conditions that
Y = 3Y/da = 0 at @ = 0. For a circular cylinder, using (92), the ex-

pression
Y 1 -ﬁz
Y(a,B,t) = 4(t/R)* {nerfn +— (e ' -1)} sinB, (93)
1 T
where n = (R!t)éaIZ, results. Here erfn is the error function defined by

n .2
erfn = —z-J e Z dz.
/m lo
In the present coordinate system, the above expressions are

equivalent to the boundary-layer solution (Goldstein and Rosenhead [?5]).

They are valid for any Reynolds number for small enough time. Outside
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the boundary layer the flow is approximately potential. For very small
times the boundary layer is very thin and although the integration can
be started using the above analysis, there are still some substantial
difficulties in continuing it numerically.

Essentially the reason is that h must be small in the thin boundary
layer, and consequently At must be small. In fact, if the explicit forward-
difference scheme in time used in equation (19) is applied to the equation
(89) governing the initial vorticity distribution, the condition for
stability is

At sRh2/2H:1 s (94)
where Hm is the maximum value of Ho' The point has been well illustrated
from a practical point of view by Ingham's recent calculations. It is
obvious that very small grid sizes and time steps must be taken to get an
accurate initial flow. Since the accuracy of the subsequent flow, except
in the final steady state, must depend upon the initial flow, the

problem of impulsively started flows requires further investigation.

CALCULATION OF THE FLOW PAST A CIRCULAR CYLINDER

All lengths are assumed to have been made nondimensional with respect
to the radius a of the cylinder and all velocities with respect to the
constant stream velocity U. The details of the transformation (8) are
as given by (11) and (12). The dimensionless stream function and negative
vorticity which appear in equations (9) and (10) are related to the
dimensional stream function and vorticity, y' and r', by the equations
' = UVay, ¢' = -Uz/a. The time t in (10) is U/a times the actual time
and the Reynolds number R is Ua/y. Actually it is more usual to use a
Reynolds number Re = 2Ua/y based on the diameter of the cylinder and we
shall adhere to this. Thus R = Re/2 is substituted in (10).

Two separate investigations of this problem have been carried out.
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Firstly, the time-dependent method was used to calculate the flow from
the impulsive start for Re = 7, 10, 20 and 40. The calculations were
continued until a steady state was reached and details of the steady-
state results which were obtained have already been given by Dennis
and Chang [26]. No details of the time-dependent results were given,
since the problem has been thoroughly investigated by Kawaguti and
Jain and the present results are in good agreement. Kawaguti and Jain
take grid sizes h = hl and use the stability condition

st < Bh2/4K’ (95)
which assumes that equation (10) can be treated as a simple heat
conduction equation with the nonlinear terms neglected and with H taking
its greatest value Hm. The condition (94) suggests that, initially
anyway, At can be twice as large. In the present calculations it was
found that larger time steps could be taken than implied by (95) and
the integrations remained stable for all times. The time steps used
in the calculations are shown in Table 2 of Ref. [?6], together with
other parameters which were used.

Time-dependent solutions were also attempted for Re = 100 and

subsequently for Re 70. In order that At should not be too small,

the solution for Re 100 was first obtained using coarse grid sizes

h = h1 = n/40, and with At = 0.05. A steady-state solution was reached
satisfactorily but it was distorted in the wake in a manner thought

to be physically unrealistic, i.e. the thickness and length of the wake
increased unreasonably. The same undoubtedly would have been true of
Kawaguti and Jain's integration at this Reynolds number had it been
allowed to continue to a steady state, for they used the coarser grid

h = h1 = 7/30. Similar features appear to be present in the recent

results of Son and Hanratty [??] at Re = 200 and 500.
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The attempt at Re = 100 was followed by an attempt at Re = 70
using h = hl = /60, At = 0.03. This was found to approach a realistic
steady solution, and the case Re = 100 was then attempted again with
the same spatial and time steps as for Re = 70. This was also approach-
ing a realistic steady solution, but very slowly. This slow ultimate
approach to the steady solution is a feature of time-dependent flow.
Kawaguti and Jain, also Son and Hanratty, have experienced it and have
discontinued some integrations before a steady solution was reached.
Certain steady properties, e.g. drag coefficients, were then estimated
by extrapolation. The present solutions for Re = 70 and 100 were also
terminated before the final limit was reached. The late time solutions
were then used to start the iterative solution of the steady equations
of motion; the solutions for steady flow were found in this way.

The only steady flow results beyond Re = 40 are the recent calcul-
ations of Takami and Keller [28], who have given results up to Re = 60.%
There is still considerable interest in an accurate description of the
nature of the steady flow as the Reynolds number inc;eases. A direct
investigation of the steady problem by present methods has been carried
out for the range of Reynolds numbers, and for the values of the
parameters, shown in Table 2. Here, n is the number of terms used to
approximate the series in (23). The general iterative procedure of
solution which has already been described was used, with smoothing of
boundary values of ¢ according to (71). The values of k used are given
in Table 2. Convergence was satisfactory with these values, although

they are not necessarily the largest values consistent with convergence.,

* Recently, some results have been reported by Hamielec and Raal [43];

they are briefly described at the end of the Appendix.
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Re h=nh a /7 n K

1 m o

5 n/40 1 20 0.05

7 n/40 1 20 0.05
10 n/40 1 20 0.05
20 /40 1 30 0.05
40 m/40 1 30 0.05
70 m/60 7/6 40 0.03
100 /60 7/6 40 0.015

TABLE 2. Parameters of steady calculations

The two values of o correspond respectively to dimensionless radial
distances of approximately 23.1 and 39.1 from the center of the cylinder.
The larger value was taken at the two highest Reynolds numbers in view
of the increasing wake length at the rear of the cylinder. 1In all
cases it was found (by observing the effect of varying am) that this
boundary was far enough from a = 0 for the approximations (80) and (82)
to be satisfactory. As predicted by theory, the solution for a < e
is extremely insensitive to the conditions assumed on a = o

A simple Gauss-Seidel iterative procedure was used to solve the
difference equations (68), using a definite number of sweeps (say 40
or 50) of the complete field to define a given iterate ;(m)(u,s) rather
than obtaining a fully converged solution of (68) to some imposed
accuracy. In this way the only convergence test which needs to be
considered is on the overall procedure of determining the successive

(m)

iterates (a,B), w(m)(a,S). The following was found to be satis-

factory. By its definition through equations (70) and (25) each rn(O),
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i.e. the value of rn(a) on 0Z, is determined from values of Z(o,B)
throughout the whole domain. The procedure was assumed to have con-
verged when two successive iterates of rn(O) agreed to some assigned
tolerance for all values of n up to no. This ensures convergence of
the boundary condition for z on 0Z.

In order to obtain numerical solutions of the greatest possible
accuracy, the final solutions which were obtained using the finite-
difference equations (68) were subsequently improved using a difference
correction method similar to that proposed by Fox [29]. If L0 denotes
the left side of (68), the equation LO = 0 is the result of neglecting
third and fourth differences and above in the central-difference
formulae for the first and second derivatives of f with regard to a and
B in (67). If we include third and fourth differences at the typical
point 0 as a correction KO, equation (68) becomes

L +K =0. (96)
It is easily verified that the formula for KO is

12Kb = 4(1 + hlo)gl + 4(1 - hlo)53 - (1 + ZhAO)Cg
-(1 - ZhAO)cll + r*{4(1 + hluo)cz + 4(1 - hluo)cé 97)

-1 + 2h1uo)c10 - (1 - 2h1uo)g12} - 6(1 + r*)co :

If the grid sizes have been chosen properly the correction Ko,
evaluated using the converged solution which satisfies Lo = 0, should
be small throughout the field. An improved solution can then be cal-
culated by setting up a new iteration which includes the correction.
If in the old iteration without correction a given iterate c(m)(u,B)

(m)

is obtained by solving the difference equations LO = 0, a suitable
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scheme for the new iteration is to solve the equations

L (m)

(m-1) _
o + Ko =0, (98)

i.e. the vector Ko is calculated from the previous iterate c(m—l)(a,s)
and held fixed during the determination of the new iterate ;(m)(a,s).
This is the basis of Fox's correction method. If Ko is everywhere
small, the procedure (98) will converge to (96), in which L0 and Ko
are mutually consistent. If Ko is not everywhere small the indication
is that the grid sizes are too large.

There is no difficulty in calculating the correction Ko at any
point of the computational field. On grid lines adjacent to B = 0 and
B = m the formula (97) involves values of £ which lie outside the field
of computation OXYZ, but these can be expressed in terms of internal
values of [ from the relations

t(a, -B) = - z(a,B), z(a, m + B) = - z(a, ™ - B)
which hold because the flow is symmetrical about the x-axis. External
values of ¢ are also involved when Ko is calculated on XY and on the
adjacent grid line a = LI h, but in this case the solution for
@ > a can be extrapolated using (74). Finally, if the typical point
0 is on the grid line o = h the value 211 is external to the field,
In this case since from (67) vlzg = 0 when o = 0 then, approximately,

110 = 2+ M)y - gy - (g, + ),

so that Cll can be calculated from internal and boundary values of z.

Application of this method to the results obtained using (68) yielded
only a small correction for all Reynolds numbers, which suggests that
the final results are of good accuracy. In previous calculations of

the steady flow, only Apelt at Reynolds number 40 has taken into account

higher difference corrections to (68) by a somewhat different method
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from that used here. The grid size (h = hl = m/20) of Apelt's cal-
culation is rather coarse.

The final results for the streamlines of the steady flow in the
seven cases considered are shown in Figures 5 - 11. Numerical values
indicate values of the dimensionless stream function . Separation of
the flow to form a recirculating region behind the cylinder has just
started at Reynolds number 7 and the length of this wake grows approx-
imately in proportion to the Reynolds number thereafter. The growth
of the length of this region with Reynolds number is one of the major
points of interest. Previous numerical solutions indicate allinear
growth with Reynolds number. There are one or two exceptions to this,
e.g. the solutions of Allen and Southwell [Sd] and Dennis and Shimshoni
[31], but in both of these there are probably deficiencies in the
numerical procedures when the Reynolds number becomes large. Takami
and Keller's recent work givesapproximately linear growth up to Re = 60,
Son and Hanratty do not obtain the steady wake length.

The present results are compared with previous numerical results
and with the experimental estimates of Taneda [?2} and Acrivos, Leal,
Snowden and Pan [}i] in Figure 12. The quantity L plotted is the
dimensionless distance from the rearmost point of the cylinder to the
end of the separated vortex pair: this is also given numerically in
Table 3, There is seen to be excellent agreement between the linear
trend of the present results and the corresponding tendency of Takami
and Keller's calculations. The results of Kawaguti and Jain start to
depart from a linear relationship after Re = 20, It seems possible
that this is due to the coarseness of their grid. A similar effect was
observed in our calculations for the time-dependent flow at Re = 100
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using h = h, = n/40. By the time L had reached its steady-state limit

1
it was almost 22, i.e. 11 diameters of the cvlinder. Moreover, as
previously noted, the vortex region was distorted and had tended to
become fat, very much after the manner of Son and Hanratty's results
for Re = 200 and 500. The results of Allen and Southwell and also
those of Dennis and Shimshoni have been omitted from Figure 12 in view
of their doubtful reliability.

The point at which the fluid separates from the surface of the
cylinder is determined from the condition that L must vanish there.
From (31) (or rather the steady analogue of it with the time absent) it
follows that the angle of separation B = B, is a root of

[+

] r_(0) sin nB = 0. (99)
n
n=1
Calculated values of Bs are given in Table 3. They are in extremely
good agreement with the calculations of Takami and Keller, who give the

0

respective values 8_ = 14.5°, 29.3°, 43.65°, 53.55°, 56.6°

, 59.0° at

the Reynolds numbers 7, 10, 20, 40, 50 and 60. Separation first starts
to take place at some critical Reynolds number between 5 and 7 for which
BS = 0. It may be deduced with the aid of (99) that this Reynolds

number is that which makes the sum

Sl(Re) = Z nrn(O)
n=1

vanish. From the present results we obtain the approximations
Sl(S) = 0.100 and Sl(7) = -0.068. A linear interpolation suggests the

critical Reynolds number as 6.2.
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Re L 8 C C G P(0) P(m)

s £ p D

5 ————  -—— 1.917  2.199  4.116  -1.044  1.872

7 0.19 15.9  1.553  1.868  3.421  -0.870  1.660
10 0.53  29.6  1.246  1.600  2.846  -0.742  1.489
20 1.88  43.7 0.812  1.233 2,045  -0.589  1.269
40  4.69  53.8  0.524  0.998  1.522  -0.509  1.144
70 8.67 61.3 0.360 0.852  1.212  -0.439  1.085
100 13.11  66.2  0.282  0.774  1.056  -0.393  1.060

TABLE 3. Properties of steady solutions

A general formula for the drag on the cylinder has been given in
the Appendix. 1In the present case the dimensionlecs drag coefficient

is defined by CD = D/pU%aand it follows that
& [* 6 ("
CD = ﬁE-Jo€091n8 dg - Re [O(agfaa)051n8 ds, (100)

where the subscripts here denote values at o = 0. The first term on
the right gives the friction drag coefficient and the second the pressure
drag coefficient, denoted respectively by Cf and Cp' Very simple ex-

pressions can be obtained for these quantities by substituting from (31)
2 -20,

with H™ = e . We obtain
Cf = Zﬁrl(O)!Re
and C = 2n{2r,(0) - x!(0)}/Re .
P 1 1

where the prime denotes differentiation with regard to a.

Calculated drag coefficients are given in Table 3 and also in
Figure 13, where the total drag coefficient is compared with other
numerical results and with the experimental measurements of Tritton [§4].

Takami and Keller have attempted to correlate their drag values with
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the formula

5 e

S o yRe”% (101)

C
given by Imai [}5] on the assumption that the limiting flow for large
Reynolds number is of Kirchhoff type. The value CDon is the drag co-
efficient of the limiting Kirchhoff flow and Y is an unknown constant.
For a circular cylinder, Brodetsky [?ﬁj gives CDm = 0.5. Takami and
Keller estimate y by evaluating it directly from (101) for Re = 50 and
60 and then extrapolating linearly in 1/Re as Re - @, This gives
Y = 3.547,

A similar procedure carried out with the present values at Re = 70
and 100 gives y = 2.99., With this value, the formula (101) gives the
respective values CD = 0.84, 0.55 at Re = 200, 500. The comparison
with the numerical values of 0,924 and 0.60 given at the same respective
Reynolds numbers by Son and Hanratty is not particularly good. Moreover,
the discrepancy in the value of Y between the present estimation and
that of Takami and Keller tends to indicate that no conclusive numerical
evidence is yet forthcoming in support of the formula (101). If we
assume an asymptotic boundary-layer type expansion for the friction
drag in powers of Re'% and fit the first two terms to the results for
Re = 70, 100 this gives

Ce 1.827Re ™% + 9,949Re™L
This formula not only fits the value at Re = 40 but gives respective
values Cf = 0.18, 0.10 at Re = 200 and 500. These compare well with
the values 0.19 and 0.09 of Son and Hanratty.

The formula for the calculation of the pressure coefficient

P(B) = 2{p(B) - p_}, (102)
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where p(B) is the dimensionless pressure on the cylinder surface and
p, that at large distances, is given in the Appendix. Curves of the
pressure coefficient are given in Figure 14 and its values at the rear
(B = 0) and the front (B = m) of the cylinder are given in Table 3.
According to the exact solution for stagnation point flow (see Schlichting
[23]) the coefficient at the front of the cylinder should behave for
large Reynolds number as

P(™) v 1 + 6Re - (103)
where 8 is a constant. Takami and Keller have estimated § = 5,985 by
calculation from (103) at Re = 50, 60 and extrapolating linearly in
1/Re as Re > =, A similar extrapolation from the present results at
Re = 70 and 100 yields é = 6.09, which is in reasonable agreement.

The behavior of the pressure coefficient at the rear of the cylinder
is of interest in view of two models which have been proposed for the
separated flow at high Reynolds numbers. According to Roshko [3?] and
to Sychev [38] the behavior for large Reynolds numbers should be

P(0) v CRe™? (104)
where C is a constant. On the other hand, the recent measurements of
Acrivos et al. suggest that P(0) becomes constant as the Reynolds
number increases, in agreement with a previous model proposed by Acrivos,
Snowden, Grove and Petersen [39]. The experimental coefficient becomes
constant at quite moderate values of the Reynolds number, of the order
of 100. Unfortunately, the results of the present calculations do not
support either of the above theories and appear to lie somewhere in
between. The variation of P(0) is not rapid enough to fit (104).
Neither is the coefficient obviously approaching a constant, at least
certainly not in the range -0.47 to -0.43 suggested by the experimental

results for circular cylinders. This question obviously requires further
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elucidation.

The distribution of vorticity throughout the flow field is shown
for the two cases Re = 70 and 100 in Figures 15 and 16. For the lower
values of Re, the features of the vorticity distributions are
essentially those already given by Takami and Keller. The dimensionless
negative vorticity on the surface of the cylinder is shown in Figure 17.
No reasonable prediction can be made as to its ultimate tendency for
large Reynolds number, and in particular as to the ultimate position
of the separation point.

Finally, the effect on the solutions of the number n_ was considered
in several cases and it was on the basis of the information obtained
that the values in Table 2 were used in the final computations. More
terms in the series (23) are needed as the Reynolds number increases
but the number LA 40 is still adequate at Re = 100. If we take as
an illustration the variation of wake length with n_ at this Reynolds
number we find L = 8.12, 12.03 and 12.99 at values n, = 10, 20, 30.

The final value (Table 3) is L = 13.1.

CALCULATED FLOW PAST AN ELLIPTIC CYLINDER

If F = cosh_l(x + iy) - a* in (8) a transformation is obtained in
which a = 0 corresponds to an ellipse whose ratio of minor to major
axes is T = tanh o* and for which Hz = 2/{cosh2(o+a*)—-cos28 }. The value

of k in (15) is %ea*. The present calculations were carried out for

t = 1/5 and for a range of values Re = 1 to 200, where Re is the Reynolds
number based on the major axis of the ellipse. A definition of Re in terms
of the generalized number R is given on the next page. The time-dependent
method was used with the impulsive start from rest, but since one of
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the main interests was in the final steady flow it was subsequently
found to be necessary to modify the procedure as described below. Only
details of the steady-state solutions will be given here,

The dimensionless major axis is of length 2cosh o* and is parallel
to the free stream. If the dimensional major axis is of length 2dcosh a#*
and ¥ and ¢ are related to the dimensional stream function and vorticity,
¥' and ¢', by ¢' = Udp, ¢' = - (U/d)Z then R = Ud/v in (10). However,
it is more convenient to use the number Re = (2Udcosh a*)/v based on the
major axis of the ellipse and for the purpose of the calculations the
substitution R = Re/(2cosh a*) is made in (10). Solutions were obtained
for the values of Re in Table 4 on p. 61. A square grid h = hl was used.
Values of h and a appropriate to each Reynolds number are given in
Table 4. The values of A in this table are defined by equation (107)
and other quantities are subsequently defined.

The greatest value of H over all the internal grid points occurs
on the line o = h, at the points for which B = h and 8 = 7 - h. If the
time step At is calculated to satisfy (94), with Hm taken as the
greatest internal value of H, and we assume h and o* to be small then,
approximately,

At < 4Rh2 {@* + h)? + n%}

for stability. For a thin ellipse At must be extremely small and a
very large number of time steps are necessary to reach the final steady
state. If the main interest is in the steady results the process can,
however, be accelerated at any stage as follows. The limiting steady
solution is independent of the form of H in equation (10). We can
therefore take H as, for example, its value e * for a circular
cylinder in (10) (but not, of course, in (9)), and then use time steps
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the same as for a circular cylinder, This was found to work and, in
fact, all the solutions were ultimately completed using this procedure.
Naturally the validity of the time-dependent results is destroyed after
this procedure is adopted, since the correct form of equation (10) is
not being used. In any case it is not proposed to discuss the time-
dependent results in this report. Finally, some of the steady results
(at Re = 1, 40, 100 and 200) were checked using the steady method of
solution and found to agree satisfactorily. The higher difference
correction Ko was not employed for these solutions.

The dimensionless negative vorticity on the surface of the cylinder
is shown for the range of Reynolds numbers in Figure 18. As in the case
of the circular cylinder, the quantity z(0,B) is shown as a function of
B and the values have been calculated from (31), which in this case
gives

o0

) r_(0)sin nB. (105)
=1 "

The angle B is not as physically meaningful in this case as it is for the

2
cosh2a* - cos28

£(0,B) =

circular cylinder, but it is convenient. A more meaningful coordinate
is
x* = x/cosh o%

which is equal to cosB at points on the ellipse. In particular, if B is
small then B %[Z(lhx*IF, i.e. B is proportional to the square root of
the distance from the trailing edge of the ellipse measured along the
major axis. Likewise if n-B is small, this angle is proportional to
the square root of the distance from the leading edge.

The vorticity passes through a sharp peak in the vicinity of the

leading edge. Figure 18 indicates that the peak occurs at approximately
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the same value of B independently of Reynolds number. If a* is small,
this can be shown to be so. We put 8 = 7 - ¢ in (105), then ¢ is
small near the leading edge and, on the cylinder, approximately

Ad

(106)
¢2 + a

where

A = z (..1)“"'1
n=1
and depends upon the Reynolds number. The peak occurs where 3z/3¢ = 0

nrn(O) (107)

and hence from (106) approximately when ¢ = a*, with a corresponding
maximum value of vorticity A/2a*. In the present case a* = 0,2027
approximately, giving an estimate ¢ = 11.6° for the position of the
maximum which agrees remarkably well with the calculated results given
in Figure 18.

If D is the total drag on the cylinder, the dimensionless drag

coefficient is defined by C_ = D/(2pU2dc05h a*). It is given (see

D
Appendix) by
2cosh o* (" 2sinh a* [" F
G, B =t Jo 7 sin8 d8 —‘~——§E——-Jo(ac/aa)051n8 dg, (108)

where the subscripts denote values at a = 0, There is a slight in-
consistency in this definition of CD and that used for the circular
cylinder. On the basis of (108) the drag values for the circular
cylinder should be divided by two to be comparable. The basis used
here is chosen to be consistent with the usual definition adopted for
a flat plate. The first and second terms on the right side of (108)
give respectively the friction drag coefficient Cf and the pressure
drag coefficient Cp. Values of the drag coefficients calculated from

the solutions are given in Table 4.
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Re C £ CP CD A B h= 1 o:m/ ™

1 3.429 0.682 4,111 0.704 0.477 m/20 1
10 0.756 0.168 0.924 1.957 0.530 w/20 1
20 0.495 0.119 0.614 2.789  0.482 w/20 1
40 0.314 0.083 0.397 4.026 0,400 w/30 1

100 0.18  0.059  0.243  6.782  0.207 w/40 1

200 0.124 0.046 0.170 10.336 -0.005 n/60 5/4

TABLE 4. Steady drag on elliptic cylinder

It will be observed that the friction drag contributes the major
portion of the total drag over the whole range and still accounts for
more than 707 at Re = 200. Only a very minor proportion of the friction
drag comes from the region between the leading edge of the cylinder
and the peak of the vorticity curve in Figure 18. This can be seen by
evaluating the portion of the friction drag integral in (108) between
¢ =0 and ¢ = o*, making use of the expression (106) for r. If it is
assumed that o* is small, the required contribution is found to be

approximately,

*
¢! = 2Acosh o* I“ 62do
2 L]
(o]

*
f Re ¢2 L
Evaluation of the integral gives

c! = 2(1-w/4)ARe_1a*cosh ak

£
and it is then found by calculation from values of A in Table 4 that
the contribution of C% to the total frictional drag Cf varies from
about 1.8%Z at Re = 1 to 3.7% at Re = 200.
Except for very low Reynolds numbers the frictional drag coefficient

in Table 4 agrees reasonably well with the skin friction drag values for

a flat plate calculated by Dennis and Dunwoody. The present values are
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a little lower. At higher Reynolds there is also remarkable agreement
with the formula

Cp v 1.328Re™ % + 5.3Re”

suggested by Van Dyke E&O] as the correct version of the formula of

Kuo [41:] for the drag of a flat plate. Thus, apart from the presence

of a small pressure drag and the effect of the rounded leading edge,

the behavior of the cylinder with regard to drag is essentially similar

to that of a flat plate, even for this relatively large thickness to
length ratio.

As the Reynolds number becomes larger the flow will eventually
separate from the rear of the cylinder. Tt will first start to separate
at B = 0 for some critical Reynolds number which makes B = 0, where

B = § nr_(0).

n=l ©

Values of B are shown in Table 4., They indicate that separation starts
for a Reynolds number between 100 and 200 and, probably, quite close
to"200. Tt may be noted that separation can be predicted with reasonable
certainty more or less independently of the grid size used in solving
equation (10). The value B = Bsat the separation point satisfies (99)
and depends only on rn(O), whose calculation involves integration over
every grid point in the field of computation and is not dependent on
local errors, such as near the body itself. For the solution at Re = 200,
the value BS = 6° is obtained, corresponding to x* = 0.9945., Finally,
pressure distributions are given in Figure 19, in which the coefficient
(102) is plotted. The curves exhibit strong gradients near the leading
edge. The behavior at the trailing edge for Re = 200 indicates that

separation has started. The curve Re = 100 is consistent with the rest

of the results but has been omitted.
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Finally, a check on the numerical solutions is available because
of the known result (78). The constant ¢ in this result is determined
as part of the computation, but it can also be determined theoretically
in terms of the drag coefficient CD’ the required formula being given
in the Appendix. The value of CD is determined by an integration
round the cylinder, and this gives an independent estimate of ¢. The
two values should agree, although very high precision cannot be expected
because, in effect, the agreement is a test of the balance of inflow
and outflow over a very large contour surrounding the cylinder, which
is a very stringent criterion. In all the numerical solutions the

test was satisfied to an acceptable degree of precision.

DISCUSSION

The practical results given in the previous two sections indicate
that satisfactory solutions to the problem of flow past cylinders can be
obtained using the numerical technique which has been described. Much of
the work of the report has been directed towards the solution of this type
of problem. As to the numerical techniques themselves, and their
efficiency, a number of points remain to be investigated. No further
detailed discussion will be given here, but a few comments can be added
regarding certain features of the numerical procedures.

The basic method was designed mainly to dispense with the necessity
of solving the Poisson equation (9) as a boundary-value problem. Thus,
by utilizing the series (23) for the stream function, it is nossible to
formulate an apnroach in whicﬁ the ordinary differential equations (24)
can be solved using step-by-step techniques. The question of whether
much reduction in computational labor is achieved has vet to be resolved.
In almost all previous numerical investigations of the Navier-Stokes
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equations, e.g. in the references cited in the present report, it has

been customary to solve (9) by iterative methods. On the whole,

iterative methods can be time consuming unless very efficient techniques
are used. Compared with methods of this kind, the present method possibly
does give a reasonable saving in computer time (an example has been

quoted by Dennis and Chang [26], p. 163). However, compared with very
efficient methods such as the fast Fourier transform method of Hockney[;6]
and the direct methods of solution recently considered in a report by
Rosser [ﬁf], the efficiency of the present method as a numerical technique
requires further investigation.

In the numerical results which have been described for flow past a
circular cylinder, a method was given for improving the approximation to
the vorticity equation (10) by taking into account higher difference
corrections to the basic finite-difference approximation (68). The
correction obtained by this method was found to be small and the method
was not applied to subsequent calculations of the flow past an ellipntic
cylinder. However, several points in this procedure can be noted. The
iterative procedure of repeatedly correcting the solution according to
the scheme (98) follows, more or less, the procedure of Fox [29]. Recent
publications by Pereyra [}8], ‘}9] suggest that this iteration may be too
elaborate and that it may not be necessarv to carry the iteration (98)
beyond the first correction (m = 1). It is not possible to say precisely
if this is the case without further investigation, because the present
problem is more complicated than that considered by Pereyra. One of the
complications is that the boundarv condition for ¢ on o = 0 (i.e. on the

line 0Z in Figure 3), which enters into the correction Ko on adjacent
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grid lines, is itself a function of the corrected solution. The iteration
(98) does take account of this.

Finally, in the application we have given of the method of difference
correction, only the difference equations (68) which approximate (10)
were corrected for the effect of higher differences and not the equations
which were used to approximate the differential equations (24). A
detailed explanation of the reason for this is lengthy, owing to the
specialized technique used to solve (24), but the following is a rough
explanation. Equation (68) arises from approximating Z locally by a
polynomial of the second degree and the addition of the difference
correction represents, effectively, a system in which ¢ is approximated
locally by a polynomial of the fourth degree. In the equations which
approximate to the differential equations (24), it is more difficult to
give a precise analogy because of the specialized method of approximation.
However, the right side T is approximated locally by a polynomial of the
second degree in the formulae which have been used and, roughly, this is
already equivalent to approximating fn by a polynomial of the fourth
degree at each grid point. The addition of any further corrections would
imply approximation to fn by a polynomial of even higher degree than the

fourth.
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APPENDIX

The equations which relate the dimensionless coordinates (x,y),
the dimensionless velocity vector V, and the dimensionless pressure p
to the corresponding (primed) dimensional quantities are
x' =dx, y' =dy, V' = Uy, p' = pUzp.
In these, d is a representative length, U is a representative velocity,
and p is the density. The generalized Reynolds number R is defined as
R = Ud/v, where v is the coefficient of kinematical viscosity. The time
t is related to the actual time, t', by t = Ut'/d.

Let (u,v) be the dimensionless components of the velocity vector

E in the directions of increase of the coordinates (a,R). The components

are related to the stream function by the equations

= q 8% o i 20
u HBB , V Ha(1 . (A.1)
The dimensionless vorticity vector is w = curl ¥ = (0,0,-z), where
= g8 by _ 3 (¥
£ =H {3B @ - 34 @1 (A.2)

Equations (A.1) and (A.2) give rise to equation (9). The equations of
motion of an incompressible fluid can be written (see Goldstein [_42])
as
v/t -~V x w=- grad(p%vz)—R-lcurl e (A.3)

The equation (10) for the component f can be obtained by taking the
curl of (A.3). When separated into components, the first two equations
are identically zero and the third gives (10).

The pressure distribution over the cylinder is obtained from (A.3).
If we take the component equation in the B-direction on the cylinder,
where u = v = 0, then on a = 0

3p _ gl 3z
8 R - (A.4)
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and hence

p(B,t) - Po(t) = _R—l I (30)0- ’ (A.5)
B
o]

where P, is the pressure at some base point 8 = BO on the cylinder.
This can be obtained in terms of the uniform pressure p_ at large dis-
tance from the cylinder by integrating the component equation of (A.3)

in the a-direction along B = BO. This component equation can be written

-13 -1
C,;_.'l_’ Su

(p+%V )R " o3 LI s
and hence
o =i | @13 Byl
PP = % L(R Lo gl (2.6)

where the path of integration B = 80 is understood in the integral.
Pressure variations are usually exhibited in terms of the pressure
coefficient P(B,t) defined by

P'(B,t) i p;

2
LpU

which is obtained by addition of (A.5) to (A.6). The only pressure cal-

P(B,t) = = 2{p(8,t) - p_}, (A.7)

culations carried out in the present report are for steady flow and in
this case the steady pressure coefficient P(R) is

8 1 3;

P(B) = 1 - 2R T J a‘;)m_ode. -2 J (B gk )8=8 (4.8)
o)

Bo
In the case of flow past a circular cylinder it is convenient to take
Bo = 7, in which case the second term in the second integral in (A.8)
is zero. For the elliptic cylinder the path Bo = 7/2 was chosen.,
Essentially, the reason for the change is that 3z/38 in the integral
in (A.6) varies rapidly near the leading edge of the ellipse (it is
infinite for the limiting case a* = 0 of a flat plate) and may lead to

an inaccurate value of P,*

The drag D exerted by the fluid on the cylinder is given by
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D = - pU J (vg dx + dup dy),
C.

where all quantities in the right side are the dimensionless quantities

already defined. Integration is round the contour C of the cylinder

€a = 0) in the anti-clockwise sense. The first and second parts of the

integral give respectively the friction drag and the pressure drag,

The second integral can be expressed more conveniently by integrating by

parts and making use of (A.4). Then

The drag coefficient C, is defined as D/pUzb, where b is some dimension
of the cylinder. For a circular cylinder b is usually taken as the
radius, while for a flat plate it is taken as the length of the plate.
The constant ¢ in (78) can be expressed in terms of C, in a manner

similar to that considered in Ref. [}2]. As a > =, the expression for
¥ which corresponds to (78) is

¥ v ke“sing - Yme (1-8/1), (A.10)
except at B = 0, where a finite discontinuity exists. Goldstein [%3]
has shown that the drag on the cylinder can be expressed by.the formula

D = pUI, (A.11)
where I is the inflow in the wake over a large contour surrounding the
cylinder. As a + =, the wake coincides with B = 0 and the inflow is
found as the total increase in y' in going once round the large contour
from B = 0 to B = 27m, where ' is the dimensional stream function, viz,
y' = Udy. Thus, from (A.10),

I = 7mcld,

and if, as above, we take C_ = D/pUzb, then from (A.11) we obtain

D
c = bCD/wd. (A.12)
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The expression (A.12) allows a check on the numerical solutions. The
coefficient %mc which appears in (A.10) is consistent with the value
%CD used by Kawaguti [}4] in the condition at infinity appropriate to
the flow past a circular cylinder. For the flat plate considered in

Ref. {}2], the appropriate value of 4me is C_, because of the different

D?
definition of CD.

Finally, only symmetrical flow past cylinders is considered in the
present report. Any type of asymmetry is ruled out by the basic
assumptions. Thus, no reference is made to the numerous investigations
of unsteady asymmetrical motion past cylinders, such as those which
attempt to predict the vortex street behind the cylinder.

As to the results (mentioned in the footnote on p. 48) given by
Hamielec and Raal [ﬁi} for steady flow past a circular cylinder, the one
calculation beyond Re = 50% which can be compared with present results
is that for Re = 100. Their value of BS = 66.8° for the separation angle is
in good agreement with present results, but the estimated values of
Cp = 1.172 and L = 9.48 differ considerably from those of the present
report. Hamielec and Raal obtain several solutions for each Reynolds
number with different positions of the outer boundary a = a . The greatest
value of @ for Re = 100 corresponds to a distance of only 12.2 radii from
the center of the cylinder. This seems to be too close to the cylinder;

according to present results it would actually be within the region of the

recirculating wake.

* It may be recalled that for a circular cylinder the Reynolds number
Re is that based on the diameter of the cylinder and, in this case,
is twice the generalized Reynolds number R used elsewhere in this

Appendix.
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FIGURE 1 Flow in rectangular cavity.
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FIGURE 2 Curvilinear coordinates (a,B).
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1
FIGURE 12 Calculated and experimental values for the wake
length L as defined on p. 52. Numerical solutions: O
O, this study; @ , Takami § Keller (1969);A,
Kawaguti § Jain (1965) ; 4, Apelt (1961);m, Kawaguti
12k (1953) ; 0, Thom (1933). Experimental measurements:
A, Acrivos, Leal, Snowden § Pan (1968); X, Taneda
(1956) . A
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6
X
X FIGURE 13 Calculated and experimental values for the total drag
coefficient defined by equation (100), p. 54. Numerical
solutions of the equations of steady motion:[J, this |
5 study; ®, Takami § Keller (1969);V, Apelt (1961);H,
o
Kawaguti (1953); O, Thom (1933). Experimental measure-
ments: X, Tritton (1959).
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Pressure coefficient on the cylinder surface.

| | |

FIGURE 14
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FIGURE 17 Vorticity distribution over the surface of the cylinder.
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25
Re=200
FIGURE 18 Vorticity distribution on elliptic cylinder.
Re is the Reynolds number based on the
major axis of the cylinder.
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FIGURE 19 Pressure coefficient on elliptic cylinder
as a function of x* = cosB.
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