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Supplementary material for
“Grounding-line flux conditions for marine ice-sheet systems
under effective-pressure-dependent and hybrid friction laws”

1. Flux conditions for hybrid friction laws: the (T) and (RC2) friction laws
In this section, we derive flux conditions for the (T) and (RC2) friction laws, in a similar

way to what has been presented in section 4 of the article for the (RC1) friction law. Because
the (T) and (RC2) friction laws are qualitatively similar – the (RC2) friction law can be
thought of as the regularisation of the (T) friction law – both friction laws are considered
together.

1.1. Derivation
Introducing the parameter υ̃, which is a scaled version of As as

υ̃ ≡



(ρg)1/p (2ρg)−nC (p+1)/p A−1h[1+p(n−1)]/p
gl As (NA model),

(ρg)1/p (2ρg)−n[C(1 − c)](p+1)/p A−1h[1+p(n−1)]/p
gl As (NB model),

(S1.1)

the following problem is obtained, in terms of the variables (Ũ, W̃ ):




dŨ
dX̃
= −|W̃ |n−1W̃, for X̃ > 0,

dW̃
dX̃
= −
|W̃ |n+1

Ũ
−

1
4
Φ̃(Ũ; Q̃gl) sgn(Ũ) +

Q̃gl |W̃ |n−1W̃

4 Ũ2
, for X̃ > 0,

(Ũ, W̃ ) = (Q̃gl, δ/8), at X̃ = 0,

(Ũ, W̃ ) → (0, 0), as X̃ → +∞,

(S1.2a)

(S1.2b)

(S1.2c)

(S1.2d)

with Φ̃ defined, for the (T) friction law, as

Φ̃(Ũ; Q̃gl) = min *
,
1 − 1A

Ũ
Q̃gl

,
Ũ

Q̃gl

(
Ũ
υ̃

)p
+
-
, (S1.3)

and, for the (RC2) friction law, as

Φ̃(Ũ; Q̃gl) =
*..
,

|Ũ |

|Ũ | + υ̃
(
Q̃gl/Ũ − 1A

) 1
p

+//
-

p

*
,
1 − 1A

Ũ
Q̃gl

+
-
. (S1.4)

The system (S1.2) can be solved for several values of υ̃ in order to approximate the mapping
υ̃ 7→ Q̃gl(υ̃). We can also guess the way in which Q̃gl depends on δ, as the (T) and (RC2)
friction laws can be associated with a (W) friction law for low values of υ̃, and a (C) friction
law for large values of υ̃. This suggests to introduce Q̌gl and υ̌ as

Q̌gl ≡



Q̃gl (δ/8)n−1

Q̃gl (δ/8)n
and υ̌ ≡




υ̃ (δ/8)(p+1−np)/p (NA model),

υ̃ (δ/8)−n (NB model),
(S1.5)
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so that the flux conditions will take the form




qgl = Q̌gl(υ̌) (δ/8)n−1 (2ρg)nC−1 A hn+2
gl ,

with υ̌ ≡

(
δ

8

) p+1−np
p



(ρg)
1
p

(2ρg)n
C

p+1
p A−1h

1
p −1+n
gl


As,

(S1.6a)

(S1.6b)

for the NA model, and




qgl = Q̌gl(υ̌) (δ/8)n (2ρg)n[C(1 − c)]−1 A hn+2
g ,

with υ̌ ≡

(
δ

8

)−n 

(ρg)
1
p

(2ρg)n
[C(1 − c)]

p+1
p A−1h

1
p −1+n
gl


As,

(S1.7a)

(S1.7b)

for the NB model. The mappings υ̌ 7→ Q̌gl(υ̌) for the (RC2) and (T) friction laws are
approximated following table S1. The following additional approximation of the maximum
function has been introduced:

mε1,ε2 (a, b, x) = a (log[exp(x − b/a) + ε1] + ε2) + b. (S1.8)

The comparison between the approximations of the mappings υ̌ 7→ Q̌gl(υ̌) and the
numerical results is shown in figure S1.

1.2. Comments
It can remarked that these mappings do not systematically consist in a smooth transition
between a constant value Q̌gl = Q̌gl |υ̌=0 and a curve Q̌gl = υ̌

p/(p+1) , as opposed to the (RC1)
case.
For the (RC2) and (T) friction laws combined with the NA model, the values of Q̌gl are

above the curve Q̌gl = υ̌
p/(p+1) , with some offset that cannot be neglected. This is explained

as follows: even if υ̌ is very large, there is always a region where there will be Coulomb
friction. This means that a pure Weertman behaviour can never be reached, which yields this
difference.
For the (T) friction law with the NB model, the transition from the constant value to the

curve is abrupt. As explained in section 3.3 of the article, if one considers the NB effective-
pressure model, the membrane-stress divergence stays small compared to the friction and
gravity stresses, and the stress distribution is almost the same everywhere in the domain, with
gravity essentially balancing friction. Then, the boundary condition at the grounding line
can be used to directly obtain the flux condition. This means that the minimum function will
be “transferred” directly to the flux condition. This analysis is not valid for the NA model, as
in that case the stress distribution is not almost constant throughout the domain.
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Friction law Effective pressure Q̌(υ̌) Free parameters

(RC2)
NA (1A = 1) mε1,ε2

(
Q̌(B)

gl , Q̌(C)
gl , υ̌

p/(p+1)
)

(ε1, ε2) = (0.255, 0.223)

NB (1A = 0) mε
(
Q̌(B)

gl , Q̌(C)
gl , υ̌

p/(p+1)
)

ε = 3.046

(T)
NA (1A = 1) mε1,ε2

(
Q̌(B)

gl , Q̌(C)
gl , υ̌

p/(p+1)
)

(ε1, ε2) = (0.255, 0.223)

NB (1A = 0) mε
(
Q̌(B)

gl , Q̌(C)
gl , υ̌

p/(p+1)
)

ε = +∞

Table S1: Functions υ̌ 7→ Q̌(υ̌) used in the flux condition of the (RC2) and (T) friction
laws.
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Figure S1: Relation between υ̌ and Q̌gl for the (RC2) and (T) friction laws combined with
the NA and NB effective-pressure models. The circles correspond to values obtained

numerically (using the numerical method described in the appendix B of the article), and
the continuous lines correspond to the approximations described in table S1.
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