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1. Failure of Reiner-Rivlin model

A possible approach to an improved constitutive relation is the Reiner-Rivlin theory
(Rivlin 1997; Reiner 1945). That theory assumes the stress to be a function of deformation
gradient and the velocity gradient σ = f(F ,∇v). When the principle of material frame
indifference in addition to the underlying symmetry of the proper unimodular group
(f(FU,∇v) = f(F ,∇v) ∀U, detU = 1) is used, this dependence reduces to

σ = ϕ̂0(ρ, Ii(d))I + ϕ̂1(ρ, Ii(d))d + ϕ̂2(ρ, Ii(d))d2, (1.1)

where d = (∇v + ∇vT )/2 and ϕ̂i are coefficients of invariants of tensor d and density
of fluid. In contrast to NSF, this model incorporates the non-linearity by taking higher
order term of the form d2 but the principle of material frame-indifference implies the
collinearity of the stress tensor σ and d . The Reiner-Rivlin form is investigated by
simulating isochoric uniform simple shear flow where A is trace free, rank one tensor of
the form A = κe1⊗e2, where flow is in e1 direction, velocity gradient along e2 direction
and κ is shear rate. Eigenvectors of d for such flow are uniform in space. Fig. 2(b)
compares the evolution of angles (θσ1, θσ2, θσ3), (θd1 = 45◦, θd2 = 135◦, θd3 = 90◦)
enclosed by e1 direction with the eigenvectors of σ(σ1, σ2, σ3), computed from OMD
simulations and eigenvectors of d (d1, d2, d3) for simple shear flow. The comparison
clearly shows the space independent lagging (θσ1,2 − θd1,2 ≈ 30◦) between two tensors σ
and d which is in contrast to the Reiner-Rivlin and Navier-Stokes theories.

This inadequacy is also supported by the evolution of the molecular density function
f(t,y,v) of the kinetic theory of gases. f represents the probability density of finding
an atom with velocity v in a small neighborhood of y at time t, in Eulerian form. The
OMD assumption in MD has a direct analog for the Boltzmann equation, corresponding
precisely to homoenergetic solutions (Dayal & James 2010; James et al. 2019). To
understand this connection, we consider an OMD simulation with the time-dependent
translation group as above, and we examine the statistics of the MD solutions. Draw a
ball B0 of any diameter centered at the origin. Now choose integers ν1, ν2, ν3 and draw
a ball Bν of the same diameter centered at y = (I + tA)(ν1e1 + ν2e2 + ν3e3). Since the
simulated atoms quickly diffuse into the nonsimulated atoms during a simulation, it is not
unusual that B0 and Bν at any particular time contain some simulated atoms and some
nonsimulated atoms. The velocities of atoms in B0 and Bν are different. Nevertheless,
if we know the velocities of atoms in B0, then we can calculate by explicit formulas the
velocities of atoms in Bν . But, based on its interpretation, this must imply an ansatz for
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the molecular density function f . It is

f(t,x,v) = g(t,v − A(I + tA)−1x) = g(t,w). (1.2)

On substituting this OMD ansatz into the general form of the Boltzmann equation,
we obtain an exact reduction to an equation for g(t,w). Here, w is nothing but the
thermal velocity where the mean velocity (A(I+tA)−1x) is subtracted from the velocity v.

In the near-equilibrium limit the Chapman-Enskog (CE) expansion leads to a CE
density function (DF) which reduces the conservation equations to the Navier-Stokes
equations. The CE distribution function for OMD flows in terms of viscous stress tensor
is written as (Boyd & Schwartzentruber 2017)

g(w) = g0(w)(1 + Φ(w)),

where
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The in-plane DF is obtained by averaging over all the thermal velocities in e3 direction.
This leads to
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This CE density function further reduces for uniform simple-shear OMD flows to

g(w1, w2) =
0.0635m

k2bpT
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exp(− m

2kbT
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(
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where τii = 0 and τ12 = µNSFκ

In Fig. 1 we plot this reduced density function g in the w1−w2 plane at t = 1.62 x 109 s
for κ = 4.6 x 109 s−1. A large shear rate has been chosen to eliminate noise in the
system and hence make the feature apparent. Dashed red and solid black lines points
along in-plane eigenvectors (Λσ2

, Λd2
) corresponding to eigenvalues (σ2 and d2) of OMD

computed stress tensor σ and d respectively. The maximum of the density function is
achieved along x = |y|(θd2

= 45◦, θd2
= 135◦) line. This indicates presence of shear

stress τ12 in accordance with the Boltzmann definition of the stress tensor (1.3) based
on thermal velocity.

σ = ⟨ ρ
N

N∑
i

[
v

′

i ⊗ v
′

i

]
⟩. (1.3)

This also verifies the underlying assumption of collinearity of stress tensor σ and strain
rate tensor d inherent in Navier-Stokes relation and hence is reflected in near-equilibrium
CE analysis derived VDF.
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Figure 1: Snapshot of Chapman-Enskog reduced density function g(w1, w2). Red and
black solid lines points along in-plane eigenvectors corresponding to eigenvalues (σ2 and
d2) of OMD computed stress tensor (σ) and strain rate tensor d .

Fig. 2(a) plots the distribution function computed from OMD simulation which shows
the inability of CE type distribution to describe the correct statistics of atoms under
highly non-equilibrium conditions. It is obtained by discretizing the w1 − w2 plane into
small bins and analyzing the statistics of the simulated atoms in the fundamental domain.
The OMD computed distribution is qualitatively very different than CE and also shows
the existence of ellipticity which is aligned along an eigenvector of stress tensor (θσ2 ≈
165◦) computed using (1.3) and hence indicates lagging in w1 − w2 plane, confirming
the failure of collinearity assumption. Thus the assumption underlying Reiner-Rivlin
constitutive equation that the stress tensor is, apart from hydrostatic pressure, a function
of velocity gradient only is not generally valid for dilute gas under large rates. A theory
which could relax this assumption will be more suitable for deriving accurate constitutive
relations.

2. Comparison between OMD and Burnett’s viscometric functions
for Lennard Jones and hard-sphere gas under uniform simple
shear respectively.

The form of the RE model for simple shear is given by

τ = −µ[A1 −
tr(A1)

3
I ]− α1[A2 −
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3
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Figure 2: (a) Snapshot of OMD reduced density function g(w1, w2). Red dashed and
black solid lines points along in-plane eigenvectors corresponding to eigenvalues (σ2 and
d2) of OMD computed stress tensor (σ) and strain rate tensor d respectively. (b) Time
evolution of the angles enclosed by eigenvectors of stress tensor σ and d with e1.
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1 = pα1/µ

2
NSF , s∗(t) =

√
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√
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Two normalized normal stress differences for v(x, t) = A(I + tA)−1x = κx2e1 reduces
to:
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where α∗
1 is a function of breakdown parameter s∗ and is non-negative. It can be seen

from (2.3) and Fig. 1 in the previous study (Pahlani et al. 2022) that first normal stress
difference N1 is negative and second normal stress difference identically vanishes.

The exact Burnett order equation for simple shear is given by (Comeaux et al. 1995)
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(2.5)
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τ12 = −2κµNSF, τ11 =
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6p
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(2.6)
where ω2 = 2, ω6 = 8 for hard sphere gas (Comeaux et al. 1995) and spatial gradients

of temperature and density fields are identically zero canceling some terms in (2.4). The
two normalized normal stress differences for Burnett hard sphere simple shear gas reduces
to

N1 = N2 = −2
κ2µ2

NSF

p2
(2.7)

This suggests that sign of first normal stress difference predicted by the proposed
RE model (Lennard-Jones gas) and Burnett model (Hard-sphere gas) are the same.
However, the second normal stress difference derived from the RE model is identically
zero, in contrast to the Burnett model which predicts the equivalence of N1 and N2.
Additionally N1 depends on the velocity gradient through α1. Note that OMD is derived
for LJ gas whereas Burnett is derived for hard sphere gas.

3. OMD solution of uniform simple shear flow of Maxwellian
molecules.

The constitutive response of gas is characterized by material functions. In this section,
we compute these material functions for simple shear flow of Maxwellian molecules where
the interatomic force between two atoms i and j at distance rij , is given by

ϕ(rij) = 48
ϵ

r2ij
(
σ

rij
)4rij (3.1)

where ϵ = 1.65×10−21J, σ = 3.4×10−10m. The details on the setup of OMD is provided
in Appendix A and in the previous work (Pahlani et al. 2023).
The definition of dimensionless material functions for uniform simple shear flow A =

κe1 ⊗ e2 are given by (Garzó & Santos 2003)

Fη(κ
∗) = −limt→∞

ν

κ

τ12(t)

p(t)

Ψ1(κ
∗) = limt→∞

ν2

κ2

τ22(t)− τ11(t)

p(t)

Ψ2(κ
∗) = limt→∞

ν2

κ2

τ33(t)− τ22(t)

p(t)

where κ∗ = κ/ν is reduced shear rate, κ is shear rate and ν is collision frequency of the
gas. For the force field given by (3.1), the collision frequency of Maxwellian molecules is
given by (Truesdell & Muncaster 1980).

ν =
p

µ
=

√
48ϵσ4

2m3
3aρ = 5.534 x 109ρ s−1

where p is pressure, µ is viscosity, ϵ and σ are force field interaction parameters given
in eq. (3.1), m = 6.6335 x 10−26 kg is mass of an argon atom, a = 1.37 for Maxwellian
molecules and ρ is density of gas which is chosen to be 0.1784 kg/m3 for the OMD



6 Gunjan Pahlani, Thomas Schwartzentruber and Richard D. James

Figure 3: Material functions as function of reduced shear rate (Maxwell molecules). These
results agree well with the analytical results from the kinetic theory, see (Garzó & Santos
2003)

simulation performed here. It is important to note that inverse fifth power interaction
considered here leads to viscosity which varies linearly with temperature T . Due to
this collision frequency remains constant as time evolves. Therefore, reduced shear rate
κ∗ which quantifies the departure of the system from equilibrium remains constant in
time for given κ even though the temperature of the system increases with time (no
thermostats). Note that this is not true for Lennard-Jones force field used in this work.

OMD evolution of the material functions are plotted in Fig. 3 against the reduced
shear rate a∗ given by the ratio of shear rate and collision frequency of the gas. Each data
point in Fig. 3 corresponds to an independent OMD simulation (ensemble averaged over
many instances of OMD simulations with varying random seeds for initial positions and
velocities) with different κ. The data (in Table 1) is extracted when the system reaches
a steady state at given κ∗. As κ∗ decreases, the computational expense of simulation
and statistical fluctuations increases.

It can be observed that the third material function Ψ2 is identically zero which is
the characteristic of Maxwellian molecules. The other two functions Fη and Ψ1 are
monotonically decreasing functions of κ∗. As κ∗ increases, Fη reduces which provides
evidence of the shear thinning effect. There exists a close comparison between the
behavior of gas observed here in Fig. 3 and the previous work (Garzó & Santos 2003)
(Chapter2, Fig. 2.3) where the continuum equations obtained by moment expansion of
the Boltzmann equation was used to derive these steady-state functions analytically. In
addition to providing insights into the non-equilibrium behavior of Maxwellian gas, this
investigation provides the validation of the numerical approach of OMD.



Constitutive relation generalizing the Navier-Stokes theory 7

κ∗ Fη(κ
∗) −Ψ1(κ

∗)

0.0934 0.99 -
0.2332 0.96 1.89
0.3733 0.813 1.75
0.4699 0.77 1.44
0.9332 0.581 0.84
1.867 0.32 0.379
2.800 0.218 0.21
3.734 0.16 0.12
4.667 0.124 0.08

Table 1: Reduced material functions as a function of reduced shear rate (Maxwell
molecules: Inverse fifth power interaction)
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