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S1. Surface Evolver (SE) simulations 

S1.1. Introduction of the simulations by employing SE 

As shown in the left panel of figure 6(a) from different views, the configuration of the film is 

initialized in a polyhedral shape. Subsequently, the surface is evolved in a loop of iterations and 

mesh refinement operations until a convergence criterion is met. Then the initial configuration 

transitions to the final stable configuration is shown in the right panels of figure 6(a). The details 

of our initial configuration are shown in figure S1, where the diameter d and thickness h are 

indicated. The final stable configuration is in the minimum energy position, and post-processing 

is employed to obtain the volume of liquid Ω and the area of the hole A. Water is added 

artificially into the liquid layer by increasing the volume in SE program. Therefore, a series of 

stable liquid layer configurations with volume smaller than the critical volume Ωc can be 

simulated in SE program. The results are presented in figure 6(b), in which the container 

diameter is d = 9 cm, the contact angle of substrate is θs = 160°, and the contact angle of wall is 

θw = 90°. 

 

 
 

Fig. S1. Initial configuration of a liquid layer with a near-wall hole. For better visualization, different colors 
are used to denote the facets of different regions: the yellow color represents the liquid-vapor surface while 
the blue color represents the liquid-solid surface. (a) The initial configuration from an oblique view. (b) The 
initial configuration from a top view. (c) The initial configuration from a front view. (d) The initial 
configuration from a side view. The diameter d and thickness h of the liquid layer are indicated. 
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S1.2. Evolution process of SE 

During a simulation, SE takes virtual displacements to reduce the total energy in each iteration. 

After several thousand iterations, the liquid surface becomes smooth and the energy of the 

system approaches an asymptotical value, and we denote this value as E0. In order to find E0, 

we define a tolerance interval δi-1 = |Ei-1 – Ei|/γlc
2, denoting Ei the energy at ith iteration as shown 

figure S2. When δi < 10–5, we suppose it is close enough to the asymptotic state, i.e., Ei-1 ≈ Ei ≈ 

E0. Typically, in our simulations, convergence is reached after several thousand iterations with 

104-105 triangular facets. 

 

 
 

Fig. S2. (a) Iteration process of SE. The red line represents the evolution of the dimensionless energy of the 
system. The insets are the configurations of the liquid film at different stages of the iteration process. (b) 
Evolution of the dimensionless quantities Ei-1 – Ei and | Ei-1 – Ei |.  

 

S1.3. Limitations of SE 

Even though SE is effective in obtaining the configuration of liquid films in wetting modes I 

and II, it has two limitations that make it incapable of capturing the wetting mode III. First, SE 

is unable to simulate the dynamic behavior of the water film. In wetting mode III, the front of 

the water film rapidly spreads along the inner wall as the liquid layer is supplied, eventually 

causing the left and right fronts of the water film to merge at the wall. Consequently, the hole 
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at the wall transforms into an inner hole within the water film. However, SE lacks the capability 

to automatically simulate this dynamic transition. Second, SE does not automatically account 

for contact line pinning and therefore cannot accurately reflect the real physical behavior. It is 

important to note that obvious contact line pinning exists at the hydrophilic wall in the 

experiment, which affects the configuration of the liquid film. However, SE does not consider 

contact line pinning and can only generate an ideal configuration of a liquid ring when the wall 

is hydrophilic. As a result, we are not able to capture wetting mode III by employing SE. 

 

S2. Lattice Boltzmann Method (LBM) simulations 

S2.1. Introduction of the simulations by employing LBM 

Lattice-Boltzmann Method (LBM) is developed based on the lattice gas automata.[1] The 

fundamental idea of LBM is to solve the discrete lattice Boltzmann equation on the regular 

lattices. LBM owns a lot of advantages, such as simple arithmetic calculations, more efficient 

of parallelism and feasible abilities of complex boundaries. In this regard, LBM is successfully 

applied in simulating the problems of flow in porous materials,[2] particle suspensions,[3] static 

and dynamic wetting phenomena on smooth and rough surfaces[4,5] and so on. 

 

Here, the wetting behavior of liquid layers with a near-wall hole is simulated by employing a 

three-dimensional D3Q19 model with Bhatnagar-Gross-Krook approximation which is a 

simple linearized version of the collision operator that makes use of a single relaxation time 

towards the local equilibrium[6]. The lattice Boltzmann equation from a discrete kinetic equation 

for the particle distribution function is 

 

 ( ) ( )
( ) ( )eq, ,

, , i i
i i i

f t f t
f t t t f t

τ

 − + ∆ + ∆ = −
r r

r e r , (S1) 

 

where fi is the particle velocity distribution function along the i-th direction (i = 0, 1, 2, … 18), 

r is the position of the lattice, ei is the local particle velocities, Δt is the time increment, and τ 

is the collision time. Moreover, the equilibrium distribution function fi
eq(r, t) is defined as 
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where the weight wi are 1/3 for the rest particles (i = 0), 1/18 for i = 1 ~ 6 and 1/36 for i =7 ~ 

18, respectively. c is the basic speed on the lattice. ρ(r) and u respectively represent the fluid 

density and velocity and they are defined as follows 
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By incorporating nonlocal interactions among the fluid particles, we can simulate the interfacial 

energy. Regarding the approach developed by Shan and Chen,[7] we consider a fluid-fluid 

interaction as follows 

 

 ( ) ( ) ( )
18
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0
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= − +∑F r r r e e , (S4) 

 

where the weight wi are 0 for |ei| = 0, 1/18 for |ei| = 1 and 1/36 for 2i =e , respectively. G 

represents the interaction strength, and we adopt ψ(r) = 1 – exp[– ρ(r)] as the interaction 

potential. Moreover, we use the following interaction potential as the interaction between the 

fluid and solid phases 

 

 ( ) ( ) ( )
18

w w
0

i i i
i

G w sψ
=

= − +∑F r r r e e , (S5) 

 

where Gw represents the interaction strength between the fluid and solid. s = 0 and s = 1 are 

defined for the corresponding lattice points where they are in fluid and solid phases, respectively. 

The fluid-fluid interfacial energy and solid-fluid interfacial energy are adjusted by changing the 



6 
 

fluid-fluid interaction strength G and the solid-fluid interaction strength Gw, respectively. By 

this way, we can simulate the contact angle ranging from 0° to 180°. 

 

When we take consideration of the fluid-fluid interaction and the fluid-solid interaction, the 

local fluid velocity is determined as follows 

 

 ( ) ( ) ( ) ( ) ( ) ( )G w' τ ρ
ρ

= + + +  u r u r F r F r r g
r

, (S6) 

 

where u'(r) is the updated fluid velocity of the next iteration. 

 

S2.2. Description of the simulation systems 

LBM has its own unit, i.e., size (lu), mass (mu) and time (ts). Since we do not consider the size 

effect, we use dimensionless formulas in the LBM simulations. Moreover, different contact 

angles are realized by varying the value of Gw. The box size in our simulations is given as 160 

lu × 160 lu × 40 lu (length × width × height), and the entire time step is typically on the order 

of 104 ts.  

 

In experiments, the film is gradually added with DI water through a syringe pump and its 

volumes increases due to the supplement. To simulate the supplement of the water, in our 

simulations, we set a source which is always in the central axis, and 30 lu away from the edge 

of the box, and the source has a cuboid shape of 8 lu × 4 lu × 2 lu (length × width × height) 

which is very small compared with the film. To suppress the dynamics, the source with outflow 

of a very small mass flow rate is employed to guarantee that the droplet quasi-statically 

increases. We have to emphasize that in this study, we mainly focus on the quasi-static process, 

but not the dynamic process. 
 
S3. Extracting the critical area 
We adopt the procedure introduced by Lv et al.[8] to extract the critical area Ac from the 

experiment data. However, it should be noted that Lv et al. used the diameter of the hole d 
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whereas we use the area of the hole A. As a result, the equations derived by Lv et al. take on 

different forms in our study. The procedure is based on the assumption that the height of the 

liquid layer remains relatively constant. The height is estimated as h = 2lcsin(θs/2) [9]. 

 

The symbols used here to present time, hole area and liquid volume are t, A and Ω, respectively. 

The rate of volume change in the liquid layer corresponds to the flow rate of the liquid supply, 

i.e., 

 c
d d2 sin
d 2 d

AQ l
t t
Ω θ = = −  

 
 (S7) 

where Q = 1ml min–1 represent the constant volumetric flow rate of the syringe pump. The 

second equality in equation (S7) is based on the assumption that any changes in the height of 

liquid layer is negligible. By integrating equation (S7) under the initial condition A|t = 0 = A0, 

where A0 represents the initial hole area, we arrive at the following relation, 

 ( ) 0

c2 sin
2

QA t A t
l θ

= −
 
 
 

 (S8) 

The procedure for determining the critical hole area Ac from the experimental data is described 

as follows. It should be noted that equation (S8) is expected to be applicable only when the hole 

area is sufficiently larger than the critical area. In each of the experimental curves shown in 

figure 5(b), we select the rightmost data point (corresponding to the largest value of (t0 – t)) as 

A0. This choice allows us to determine the specific form of (S8) for each considered value of d. 

we assume that the critical hole area is reached when the experimental curve deviates by a 

predetermined amount from the curve defined by (S8). In figure S3, we present the results of 

an experiment conducted in a container with d = 6.6 cm, which serves as a reference. The first 

experimental data point is chosen as A0 in equation (S8). The numerical results obtained through 

SE suggest that the critical area in this case, taken as Ac ≈ 1.18 cm2, is presented as a red dot in 

figure S3. The deviation between the red dot and the corresponding value of our model, A(tc), 

can be characterized by defining a dimensionless ratio ε = (A(tc) – Ac)/Ac, which takes a value 

of ≈ 6.72% for the specific case under consideration. Therefore, to determine the critical area 
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for other container sizes, we assume the same derivation of ε = 6.72 % between the experimental 

data and the model curve. 

 

 
 

Fig S3. Procedure for computing the characteristic deviation ε. The black squares are the experimental data 
obtained in the smallest container (d = 6.6 cm, see figure 5(b)). The red dot in the diagram represents Ac as 
obtained from the SE results. The solid red line is the result of (S8). 
 
S4. Comparison between the SE results and LBM results 
We present a comparison between the SE results and LBM results as shown in figure S4. The 

black circles and red squares represent the SE results and LBM results, respectively. The 

diameter of the container is d = 6 cm, and the contact angles of the substrate and the wall are θs 

= 120° and θw = 90°, respectively. The SE results and LBM results are consistent with each 

other. 
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Fig S4. Dependency of the hole area A on the liquid volume Ω. The black circles and red squares represent 
the SE results and LBM results, respectively. The contact angles of the substrate and the wall are θs = 120° 
and θw = 90°, respectively. The diameter of the container is d = 6 cm. 
 

S5. Relationships of A vs. Ω and A vs. h 

In order to get a comprehensive understanding of the relationships among A, h and Ω, we here 

provide a graph illustrating the dependence of Ω on A, as well as the dependence of h on A as 

shown in figure S5. The dense data points and the black hollow circles represent theoretical 

results and SE simulation results, respectively. In figure S5(a) and (b), the container diameter 

is fixed at d = 9 cm, and with contact angles θs = θw ranging from 90°, 120°, 150° to 180°. In 

figure S5(c) and (d), the contact angles are fixed at θs = 160° and θw = 90°, and circular 

containers with five different diameters d are employed, i.e., d = 7 cm, 9 cm, 11 cm, 13 cm, 15 

cm. Ωc and Ac respectively denote the critical values of the liquid volume and the hole area 

when instability occurs. The dashed lines in (b) and (d) denote h = 2lcsin(θs/2). 
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Fig S5. Numerical solutions illustrating the dependence of Ω on A, as well as the dependence of A on h, in 
dimensionless form. The dense data points represent theoretical results, while the black hollow circles 
represent the results obtained from SE simulations. (a) and (b): The container diameter is fixed at d = 9 cm, 
with contact angles θs = θw ranging from 90°, 120°, 150° to 180° being considered. (c) and (d): The contact 
angles are fixed at θs = 160° and θw = 90°. Circular containers with five different diameters d are employed, 
i.e., d = 7 cm, 9 cm, 11 cm, 13 cm, 15 cm. Ωc and Ac respectively denote the critical values of the liquid 
volume and the hole area when instability occurs. The dashed lines in (b) and (d) denote h = 2lcsin(θs/2). 

 

S6. Alternative theoretical model 

We here derived an alternative theoretical model, which can be verified to be equivalent to the 

model derived in §4.1 later. In this derivation, we employed the same assumptions and process 

as outlined in §4.1, with the corresponding geometry presented in figure S6. 
 

 
 
Figure S6. Simplified liquid layer profiles shown from (a) an oblique view and (b) a top view. Relevant 
geometric parameters are defined. 
 
As depicted in figure S6, the relationship between θw, α and β can be expressed as θw + α – β = 

π. In addition, the areas of the characteristic surfaces, namely A1, A2 and A3, can be calculated 

as follows: A1= r1
2(π – α + sinαcosα) + r2

2(β – sinβcosβ), A2 = 2βr2h and A3 = 2r1(π – α)h, where 

r1 and r2 satisfy the condition r1sinα = r2sinβ. The total free energy of the system, which includes 

the surface energy and gravity potential, can be written as E = Es + Eg = A1γ(1 – cosθs) + A2γ – 

A3γcosθw + ρΩgh/2. 
 
For convenience, by employing the radius of the liquid layer r1 as a reference, we introduce 

dimensionless forms of the relevant geometric and physical quantities as follows 
 

 31 2
1 2 32 2 2 2 3

1 1 1 1 1 1

,   ,   ,   ,   ,   AA A E hA A A E h
r r r r r r

ΩΩ
γ

= = = = = =     . (S9) 
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Consequently, we rewrite A1, A2, A3 and E into the following dimensionless forms 
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In order to determine the equilibrium profile of the liquid, we calculate the derivative of the 

energy in terms as α and set it equal to zero, i.e., 
 

 0E
α
∂

=
∂



. (S14) 

 
In addition, considering the constraint 
 

 1 constantA hΩ = = , (S15) 

 

we have ∂Ω/∂α = 0, thus, the following relation can be obtained 
 

 1

1

Ah h
Aα α

∂∂
= − ⋅
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. (S16) 

 

Substituting equations (S10) - (S13) and (S16) into equation (S14), we obtain the dimensionless 

value of the liquid layer thickness as follows 
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where 
 

 

2 2
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The solution of equation (S17) is obtained and is presented in figure S7. It is evident from figure 

S7 that the results derived from the model presented here are the same as those obtained in the 

manuscript (see §4.1). In other words, the two approaches for derivation are equivalent. 
 

 
 
Figure S7. Solutions of equation (S17) and equation (4.12) illustrating the dimensionless relationship 
between Ω on A. The black solid line and the red line represent the solutions of equation (S17) and equation 
(4.12), respectively. The diameter of the container is d = 7 cm, and the contact angles are θs = 160° and θw = 
90°. 

 

S7. Theoretical model with correcting coefficients 

We derived the model in §4 neglecting the meridional curvature which results in the miss of an 

energy penalty for having the liquid-vapor surface area A1 and A2. To fix this problem, we here 

introduced the two coefficients c1 and c2 for the two parts of the liquid-vapor surface A1 and A2 

in our model, respectively, to modify the effective liquid-vapor interfacial energy. Therefore, 

the surface energy of the system is rewritten as Es = A1γ(c1 – cosθs) + c2A2γ – A3γcosθw, where 

c1 and c2 are the correcting coefficients for the liquid-vapor surface A1 and A2. Following the 
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same steps as described in §4.1, we can finally obtain 
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 (S19) 

 

We determine the coefficients c1 and c2 in the following manner. As an example, we select a 

container with a diameter of d = 6.6 cm and contact angles of θs = θw = 110°. The volume of 

the liquid film is set at Ω = 12.0 ml, serving as a reference. Once the liquid layer with a stable 

hole at the wall is formed, the liquid-vapor area consists of two parts, the upper liquid-vapor 

area A1 and the side liquid-vapor area A2. Subsequently, we extracted the two surface areas A1 

and A2 separately from the SE simulation and the theoretical model. From the SE simulation, 

we find that the upper liquid-vapor surface area is A1
SE = 28.476 cm2, while in the theoretical 

model, it is A1
model = 29.236 cm2. Hence, we define c1 as c1 = A1

SE/A1
model = 28.476/29.236 = 

0.97. Similarly, for the side liquid-vapor surface area, we find A2
SE = 1.332 cm2 in the SE 

simulation and A2
model = 2.016 cm2 in the theoretical model. Consequently, we define c2 as c2 = 

A2
SE/ A2

model =1.332/2.016 = 0.66. After that, by substituting the correcting coefficients c1 = 

0.97 and c2 = 0.66 into equation (S19), we finally obtain the dimensionless relationship between 

A and Ω, as illustrated in figure S8. We can see from figure S8 that the model with correcting 

coefficients is consistent with SE simulations. 
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Figure S8. Comparison of Ω on A in dimensionless form between different methods. The black line represents 
the solution of the model (i.e., equation (4.12) in the main text) without the correcting coefficients. The red 
line represents the solution of the model (i.e., equation (S19)) with the correcting coefficients, where c1 = 
0.97 and c2 = 0.66. The black hollow circles represent the results of the Surface Evolver simulation. The 
diameter of the container is d = 6.6 cm, and the contact angle is θs = θw = 110°. 

 

It is important to note that the liquid-vapor surface area is 29.808 cm2 and 31.252 cm2 in SE 

simulation and theoretical model, respectively, and the difference between the two is only 

(31.252 – 29.808)/29.808 ≈ 4.54%, which indicates our assumption of a flat liquid film in the 

manuscript is reasonable. Even though the corrected model exhibits more excellent consistency 

with SE simulation, the discrepancy in surface area between the two model is minimal. 

Furthermore, the model presented in the manuscript is able to effectively capture the underlying 

physical mechanism. 

 

S8. Analysis of the scaling exponent in the dynamic behavior of hole collapse 

The scaling exponent in the dynamic behavior of hole collapse is sensitive to the choice of t0. 

Strictly speaking, t0 is defined as the moment when A = 0. However, accurately determining the 

value of t0 from experiments is very difficult due to the limited frame rate of the high-speed 

camera. In other words, close to the singularity t0, for a single recording, the first frame chosen 

must have either t > t0 or t < t0 with |t – t0| < δt. δt represents the time interval between two 
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neighboring frames (i.e., the first and the second frames), e.g., δt = 5×10–5 s when the frame 

rate is 20 000 fps. 

 

For a single trial in the practical experiment, t0 is determined as the moment captured in the 

snapshot just prior to the closure of the hole. Once t0 is determined, we can obtain the 

corresponding hole area A for a given value of (t0 – t). Subsequently, the same experiment is 

conducted five times to generate five data sets reflecting the relationship between A and (t0 – t). 

After that, for each time point (t0 – t), we calculate the average value of the hole area A based 

on these five experiments. Finally, we present (t0 – t) and the corresponding average value of A 

as figure17. In this case, since t0 is approximately determined, we denoted it as t0 ≈ t0approx. 

 

To ensure a comprehensive understanding, we choose t0 using three different approaches: (1) 

t0 ≈ t0
approx (as stated in the above); (2) t0 ≈ t–1 = t0 – δt; (3) t0 ≈ t+1 = t0 + δt. In addition, we tried 

to fit the experimental data using an exponent of 1. Figure S9 illustrates the dependence of A 

on (t0 – t) using these three approaches to determined t0. It is evident that an exponent of 1.1 

provides the best fit for our experimental data. 
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Figure S9. Time evolution of the hole area A in wetting mode II. Here, t denotes the time and t0 is defined as 
the moment when the hole is completely closed. The red squares are experimental data with error bars, and 
the black solid line is the fit to the experimental data based on the scaling law of A ~ (t0 – t)1.1 (a, c and e) or 
A ~ (t0 – t)1 (b, d and f). The data in (a) and (b) is from figure 17 in the main text, i.e., t0 ≈ t0approx. In (c) and 
(d), we choose t0 ≈ t–1 = t0 – δt. In (e) and (f), we choose the t0 ≈ t+1 = t0 + δt. 

 

 

S9. Supplementary Movies  

Video S1. Wetting mode I of the film observed in the experiment. The movie shows the 

entire processes of the wetting mode I of the film. The geometrical parameters of the container 

is d = 9 cm, and the flow rate is Q = 1 ml/min. The substrate and wall are both coated with 
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Glaco. When the film is added with DI water, it gradually wets the container. As time processes, 

the film gradually fills the container and finally evolves to a uniform film at t = 161.3 s. 

 

Video S2. Wetting mode II of the film observed in the experiment. The movie shows the 

entire processes of the wetting mode II of the film. The geometrical parameters of the container 

is d = 9 cm, and the flow rate is Q = 0.1 ml/min. The substrate is coated Glaco, and the wall is 

treated with commercial hydrophobic coating. 

 

Video S3. Wetting mode III of the film observed in the experiment. The movie shows the 

entire processes of the wetting mode III of the film. The geometrical parameters of the container 

is d = 9 cm, and the flow rate is Q = 0.1 ml/min. The substrate is coated Glaco, and the wall is 

not treated with coatings. 

 

Video S4. Wetting mode I of the film obtained by employing LBM simulations. The movie 

shows the entire processes of the wetting mode I of the film obtained by employing LBM 

simulation. The diameter of the container is d = 160 lu, and the contact angles of the substrate 

and the wall are 120° and 180°, respectively. 

 

Video S5. Wetting mode II of the film obtained by employing LBM simulations. The movie 

shows the entire processes of the wetting mode I of the film obtained by employing LBM 

simulation. The diameter of the container is d = 160 lu, and the contact angles of the substrate 

and the wall are 120° and 90°, respectively. 

 

Video S6. Wetting mode III of the film obtained by employing LBM simulations. The 

movie shows the entire processes of the wetting mode I of the film obtained by employing LBM 

simulations. The diameter of the container is d = 160 lu, and the contact angles of the substrate 

and the wall are 120° and 35°, respectively. 

 

Video S7. The final stage of the hole collapse in wetting mode II. The movie shows the final 
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stage of the hole collapse in wetting mode II. The geometrical parameters of the container is d 

= 9 cm. The substrate is coated Glaco, and the wall is treated with commercial hydrophobic 

coating. 
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