
Predicting turbulent dynamics from data 1

0 10 20 30 40
Wave number

10−16

10−12

10−8

10−4

100
E

(a)Re=30

0 10 20 30 40
Wave number

(b)Re=34

Figure 1: Energy spectra at Re=30, (a), and Re=34, (b).

Appendix S. Supplementary material
S.1. Selection of number of Fourier modes

Following Farazmand (2016), we select the number of Fourier modes by studying the
convergence of the time-average, (·), of the kinetic energy,
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as a function of number of the fourier modes in the numerical solver. In both the quasiperiodic
and chaotic cases, we select 32 wave numbers, Figure 1. For 𝑘 = 32 wave numbers, we solve
for (2𝑘 + 1)2 modes, [−𝑘,−𝑘 + 1, . . . , 0, . . . , 𝑘 − 1, 𝑘] in each direction, where each mode
consists of two complex components. Because the physical flowfield has real values, the
coefficients of the negative wave numbers are the conjugates of the coefficient of the positive
wave numbers, 𝑐𝑘1,𝑘2 = 𝑐∗−𝑘1,−𝑘2. This results in (2𝑘 + 2) × 𝑘 × 2 × 2 = 8448 active degrees
of freedom of the system (𝑐0,0 is constant as it represents the mean of the flow field) (chapter
6, Pope 2000).

S.2. Jacobian-free computation of the Lyapunov exponents
In this section, we describe the algorithm used to compute the first 𝑚 largest Lyapunov
exponents of the system. The algorithm requires the integration of the governing equations
𝑚 +1 times, and does not require the computation of the Jacobian of the system. We consider
a nonlinear autonomous dynamical system in the form of

¤𝒒 = 𝒇 (𝒒) (S 2)

where 𝒒 is the system’s state and 𝒇 is a nonlinear operator. In chaotic solutions, the norm
of a perturbation 𝒚𝑖 , such that �̂�𝑖 = 𝒒 + 𝒚𝑖 with | |𝒚𝑖 | | ≪ ||𝒒 | |, grows in time until nonlinear
saturation. For small enough times, 𝑡1−𝑡0, so that we avoid nonlinear saturation, the evolution
of 𝒚𝑖 can be computed as

𝒚𝑖 (𝑡1) = 𝒒(𝑡1) − �̂�𝑖 (𝑡1), (S 3)
where both elements in the right-hand side are computed by solving (S 2) with initial
conditions equal to 𝒒(𝑡0) and 𝒒(𝑡0) + 𝒚𝑖 (𝑡0), respectively. The average exponential growth
rate for the perturbation 𝒚𝑖 between 𝑡0 and 𝑡1 is
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where | | · | | indicates the 𝐿2 norm. For 𝑡1 → ∞, almost all perturbations evolve with the same
Λ1, the dominant Lyapunov exponent
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𝑡1→∞
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as the component along the direction with maximum growth becomes dominant for suffi-
ciently long times. However, due to saturation of the nonlinear equations (or instability of
the linearized equations), computing Λ1 is not straightforward.

To compute the growth along the 𝑚 most unstable directions for long times, Benettin et al.
(1980) proposed to periodically orthonormalize the evolution of the subspace spanned by 𝑚

different perturbations. The algorithm works as follows. Every 𝑡o, we orthonormalize the 𝑚

perturbations and compute the future evolution of the orthonormalized basis:
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where 𝜖 ≪ ||𝒒 | | is selected in order for initial condition to be infinitesimal and 𝒚𝑖 (𝑡)
is computed using (S 3). For the first orthonormalization, the initial condition of the
perturbations is random. At each orthonormalization, we store the average exponential
growths, so that for the 𝑖-th direction at the 𝑘-th orthonormalization we have
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where | |𝒚𝑖 (𝑡 − 𝑡o) | | = 𝜖 . After 𝑁o orthonormalizations, the Lyapunov exponents are the
average of the stored exponential growths
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S.3. Quasiperiodic dataset
In this section, we provide additional analysis on the saturation of the NRMSE of the
autoencoder in the quasiperiodic case, panel (a) in Fig. 4.

Figure 2 shows the NRMSE for the autoencoder (CNN) and different POD projections,
which differ one from the other for the training and test set used. The CNN and POD errors are
obtained by generating the subspace using the training set and then computing the NRMSE
in the test set. The POD-train and POD-test are obtained by generating the reduced order
model on the training and test sets, respectively, and then computing the NRMSE on the
same set that was used to generate the reduced order model. We observe that both the CNN
and POD show a saturation of the NRMSE, while the POD-test and POD-train do not. This
indicates that there is a discrepancy between training data and the test data. We observed the
same saturation behavior for different training sets of 30000 time units (results not shown),
and we conclude that the saturation is due to the fact that a training set of 30000 time units
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Figure 2: Discrepancy between training and test set in the quasiperiodic case.

is not fully representative of the entire trajectory of the system. This is a common situations
in real world scenarios, where the available data is often incomplete.

S.4. Extended results for the POD modes
In Figure 3, we show the comparison of Figure 7 for the first ten POD modes.

S.5. Dynamical content in the autoencoder loss function
We provide an example of latent space tailored for the prediction in time of the system. We
included in the autoencoder loss function the time-derivative of the system, which did not
improve the results shown in §§5-6. We report the formulation here to (i) prevent fellow
researchers from trying what we observed not to work and to (ii) provide a basis for the
further development of dynamically-aware reduced-order modelling with machine learning
in fluids. We minimise the error on the time derivative of the system to include information
about the dynamical content of the system during the training of the autoencoder:
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where 𝛼1 and 𝛼2 are normalization coefficients selected for the two losses to have the same
order of magnitude. They are equal to 1/𝜎(𝑁−1

phys | |�̂� − 𝒒 | |2) and 1/𝜎(𝑁−1
phys
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respectively; 𝜎(·) is the standard deviation computed over the training set. In this work, the
time-derivative is computed using by first-order finite difference:
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where 𝛿𝑡 is defined in §2. Other possible choices are automatic differentiation (Racca &
Magri 2021a) or the governing equations (if known). The purpose of minimising the error on
the time-derivative is for the autoencoder to reconstruct not only the structures that account
for the majority of the energy, but also the structures that contribute to the change in time of
the state of the system.
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Figure 3: First ten POD modes, one per row, for the reconstructed flow field based on 4
POD modes in latent space (a)-(b) and the true flow field (c)-(d). POD modes are
sorted in descending order with first row being the first mode.
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