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1 Approximated toughness dominated solution K̂
[V ]

The main hypotheses of the 3-D K̂ [V ] GG (2014) solution do not differ from their constant release counter-
parts. Both assume a toughness-dominated 3-D buoyant fracture head with a finger-like tail far enough from
the source point to feel any influence of it (e.g. large aspect ratios). The strictly hydrostatic net pressure in
the head leads to a constant volume and geometry head. Due to the finite volume release, the net pressure
in the tail is no longer uniform along its length. A 2-D plane-strain approach with constant pressure is still
possible along the horizontal cross-section.

1.1 Toughness dominated head

This part of the fracture is strictly identical to the 3-D K̂ GG (2014) solution, described in section 1.1 of the
Supplementary Material of Möri and Lecampion [2022].

1.2 Viscous tail
The tail only differs in its overall volume balance, which is given by

b

∫ `tail

0

w̄ (z, t)dz = Vo − V head (1)

where the opening now depends on time and location. For all other details, we refer the reader to section 1.2
of the Supplementary Material of Möri and Lecampion [2022].

With these hypotheses at hand, one can obtain the similarity solutions through the usual methods (see
Spence et al. [1987], Lister [1990], Spence and Turcotte [1990]) as
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Figure 1: Height evolution of a toughness-dominated fracture together with the 3-D K̂ [V ] GG (2014) according
to equation (4).

and replace t = τts to obtain

γtail ≈ 2.60603τ1/3

(
1− 0.78985

K
16/9
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E′2/3V
2/3
o ∆γ10/9

)
≈ 2.60603τ1/3

(
1− 0.78985B−10/9ks

)
. (4)

This equation shows that we will reach the tail solution within a certain percentage only. This difference,
respectively the change in the pre-factor, depends on the value of the dimensionless buoyancy Bks.

ε 2.60603τ1/3 = γtail → ε = 1− 0.78985B−10/9ks (5)

where ε is the change in the prefactor to the tail scaling one obtains for the given parameter combination.
To observe the scaling predicted by the K̂ [V ] solution presented in the article (e.g. `tail (t) = 2.60603`

[V ]

k̂
(t))

within an error of 5%, we would need a dimensionless buoyancy of the order of

Bε=5%
ks ≥ 11.9872. (6)

When applying this to figure 4b) of the main article, we show with an orange dotted line the main trend

γtail ≈ 2.60603τ1/3 (7)

and omit the details of the dependency on Bksbecause only one simulation (the one showing the linear trend
in the continuous release case) could effectively show these details. We hence report the exact prediction for
this simulation only in figure 1 and observe a minimal error to the end of the simulation of about 24%. If
propagation continues, the error decreases further. For a discussion of why we do not report further ongoing
simulations, we refer the reader to section 5.1.1 of the main article.

We further get the scales of the opening and pressure of their solution, which are, respectively

w (t) = 0.845257
V

1/3
o µ′1/3

K
2/9
Ic ∆γ1/9t1/3

= 0.845257w
[V ]

k̂
(t) (8)
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Figure 2: Opening (a) and pressure (b) along the centerline (e.g. x = 0) for a toughness-dominated simulation
with Mk̂ = 1 and Bks = 2 at t/tkk̂ = 179. Black dashed-dotted lines show the tail solutions of equations
(10) and (11).

More interesting to see is the evolution of the average opening and pressure with the coordinate z

w (z, t) = 0.523599
µ′1/2
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K
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z1/2. (11)

In figure 1, we show the opening and pressure profile at the last time step of the simulation with Mk̂ = 1
and Bks = 2 reported in figure 4) of the main article. One observes that the match obtained using equations
(10) and (11) is very accurate.

1.3 Limit of applicability of their theory
This solution is only valid if the pressure in the tail does not allow for lateral expansion (e.g. the fracture
breadth does not grow). In other terms, the pressure in the tail must at all times be p (z, t) ≤ KIc/

√
0.782257`b.

As the pressure in the tail reduces, this condition verifies at a given time during fracture propagation. Gara-
gash and Germanovich [2014] derive this limit as

Vo/V∗
t/t∗

< 0.352139 (12)

which be transformed in a stabilization time of the form

tstab = 0.545885t
[V ]

m̂k̂
B5/12ks . (13)

The fact that lateral stabilization occurs later than the transition of the tail from viscosity- to toughness-
dominated propagation (because Bks ≥ 1 for buoyant fractures) explains why we have such a hard time
showing simulations validating the toughness-dominated limit after being viscosity-dominated. Figure 5a) of
the main article shows this problem, and we sketch the computational cost implied in section 5.1.1.

2 Self-similarity of the zero-toughness solution
We mention in section 5.2 of the main article that the evolution of a zero-toughness, finite volume, buoyant
hydraulic fracture becomes nearly self-similar at a late time. This self-similarity is function of the scales
presented in equation (5.6) of the main article
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Figure 3 shows a simulation withMk̂ = Bks =∞ and Bms = 10−3 (e.g. transitioning from radial to buoyant
in the viscosity-dominated pulse M[V ]-regime) where we report all quantities scaled by the scaling of equation
(14). Note that we use a shifted z coordinate ẑ as to have ẑ = 0 coinciding with the lowest point of the
fracture.

The horizontal scale of the footprint is time-independent, whereas its vertical scale depends on time as
`
[V ]
m̂ ∝ t1/3. One observes that after the transition, the total height of the fracture (e.g. the highest point in
the scaled simulation) no longer changes. Simultaneously, fracture propagation becomes akin to the scaling,
as depicted in figure 6c of the main article. Such is the case for times later than t/t[V ]

mm̂ & 10, even though the
footprint shape is still elliptical. During ongoing propagation, the shape becomes more and more avocado-
like before approaching self-similarity for t/t[V ]

mm̂ & 800. The resulting footprint is similar to the self-similar
shape of a zero-toughness, continuous-release, buoyant hydraulic fracture (see figure 5 of Möri and Lecampion
[2022]), albeit elongated. As in this continuous release case, the nearly self-similar shape occurence relates
to the head volume becoming negligible compared to the total release volume. This effect is visible in figure
3b, where the head to the right becomes smaller and no longer shows significantly more cross-section volume
than the adjacent parts of the tail. The detail of the head becomes negligible when observing the overall
shape even though it still governs the propagation rate.

Similarly to the continuous release case, the footprint becomes flat around the centerline x = 0 (see figure
3a), indicating that the approximation of a 2-D plain strain fracture at the centerline might be applicable.
Roper and Lister [2007] sketched such a solution in section 6 of their article and derived the fracture height
(see their equation (6.7)). Interestingly, this two-dimensional evolution is equivalent to the scaling for the
toughness-dominated case of equation (10) but without a prefactor

wlister (z, t) =
µ′1/2

∆γ1/2t1/2
z1/2. (15)

Scaling with Ω = wlister (z, t) /w
[V ]
m̂ and using the dimensionless coordinate ζ̂ = ẑ/`

[V ]
m̂ we obtain

Ω
(
ζ̂
)

=

√
ζ̂ (16)

shown as a blue dashed line in figure 3c. The match close to the source region is astonishing and holds even if
the width constraint becomes activated close to the source point. In the proximity of the propagating head,
the solution seems to deviate because of 3-D effects. Nonetheless, combining the zero toughness head solution
(c.f. figure 7 of Möri and Lecampion [2022]) with equation (16), could result in a complete description of
zero toughness, buoyant, finite volume fractures.
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Figure 3: Footprint (a), cross-sectional volume (b), opening (c), and pressure (d) of a zero-toughness, finite

volume buoyant hydraulic fracture scaled by the corresponding M̂
[V ]

-scaling (see equation (14), or equation
(5.6) of the main article). The blue dashed line in c) indicates the solution presented by Roper and Lister
[2007].
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