Movie 1: Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet properties, the numerical viscosity, and the mean shear are equal to those in case B$_4$. Droplet interfaces are black lines, velocity vectors deviation from the mean velocity field are black arrows, color contours of $P' = -S\rho uw$, and temporal evolution of $P_d = \langle P' \rangle_d$ in insert.

Movie 2: Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet properties, the numerical viscosity, and the mean shear are equal to those in case D$_4$. Droplet interfaces are black lines, velocity vectors deviation from the mean velocity field are black arrows, color contours of $P' = -S\rho uw$, and temporal evolution of $P_d = \langle P' \rangle_d$ in insert.

Movie 3: Instantaneous color contours in x–z plane of $P' = -S\rho uw$ and black lines for droplet interfaces for case B$_4$.

Movie 4: Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet properties, the numerical viscosity, and the mean shear are equal to those in case B$_4$. Droplet interfaces are black lines, velocity vectors deviation from the mean velocity field are black arrows, color contours of $\varepsilon' = Re^{-1}(T'_{ij}S'_{ij})$, and temporal evolution of $\varepsilon_d = \langle \varepsilon' \rangle_d$ in insert.