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S.1. Calculation of the stream function based on Huh & Scriven

By defining the stream function

ur = −1

r

∂ψ

∂φ
,

uφ =
∂ψ

∂r
,

we have the bi-harmonic equation for ψ

∇2∇ψi = 0, i = α, δ.

The general solution in the polar coordinate for a bounded velocity is expressed as (Huh
& Scriven 1971)

ψi(r, φ) = r(ai sinφ+ bi cosφ+ ciφ sinφ+ diφ cosφ), i = α, δ.

The eight unknowns ai, bi, ci, di in the two phases are determined by the following eight
boundary conditions (1-8).
-(1,2,3,4) The normal velocities of both phases at the solid-liquid and fluid-fluid

interface are zero

∂ψα
∂r

|φ=θ = 0;

∂ψα
∂r

|φ=π = 0;

∂ψδ
∂r

|φ=θ = 0;

∂ψδ
∂r

|φ=0 = 0;
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-(5) At the fluid-fluid interface, the continuity of the velocity in the tangential direction
(no-slip)

∂ψα
∂φ

|φ=θ =
∂ψδ
∂φ

|φ=θ;

-(6) At the fluid-fluid interface, the balance of the tangential stress reads

ηα
∂2ψα
∂φ2

|φ=θ = ηδ
∂2ψδ
∂φ2

|φ=θ;

-(7,8) No-slip of the fluid at the solid surface

−U = −1

r

∂ψα
∂φ

|φ=π;

U = −1

r

∂ψδ
∂φ

|φ=0.

S.2. Jacqmin’s leading order analysis

By considering a contact angle of 90◦ and a viscosity ratio of 1, the stream line is
symmetry with respect to the interface. Here, the fluid-fluid interface is at φ = 0◦ and
the solid-liquid interface is at φ = −90◦ differing from the analysis of Huh & Scriven.
Because of the symmetry, the general solution of the stream function has four unknowns

ψ(r, φ) = r(a sinφ+ b cosφ+ cφ sinφ+ dφ cosφ).

By applying the four boundary conditions
• The normal velocity at the substrate is zero

∂ψ

∂r

∣∣
θ=−π

2

= 0 ⇒ a = c
π

2
.

• The symmetry condition leads to

∂ψ

∂θ
|θ=0 = 0 ⇒ a = −d. (S.1)

• The normal velocity at the interface is zero

∂ψ

∂r
|θ=0 = 0 ⇒ b = 0.

• The tangential velocity of the fluid at the substrate is the same as the substrate (no
relative motion)

−1

r

∂ψ

∂θ
|θ=−π

2
= −1 ⇒ a =

1
2π

1− 1
4π

2
. (S.2)

So that the stream function reads

ψ(r, φ) = r(a sinφ− aφ cosφ− cφ cosφ).

The Laplace equation for the chemical potential in the polar coordinate (2D) reads

∂2µ

∂r2
+

1

r

∂µ

∂r
+

1

r2
∂2µ

∂φ2
= 0. (S.3)

For the leading order solution (planar interface), we have two constraints for the r-related
terms: (i) O( 1

r2 ), (ii) as r → ∞, we have the chemical potential at equilibrium, namely
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Figure S.1. Binary wetting model: (I) The excess free energy density ∆f across the interface
as a function of ϕ, scaled by f∗ (see Tab.S.I). (II) The determination of the surface composition
via the intersection of the two curves

√
2κ∆f and Γ ′(ϕ), both curves are scaled by the factor of

σ∗ (see Tab.S.I). The parameters for the plot is T = 1, χ = 2.5, κ = 1 a1 = 0.4, and a2 = −0.3.

µ = 0. Due to these two constraints, the general solution is proposed as

µ(r, φ) = C1(φ)
ln r

r
+ C2(φ)

1

r
. (S.4)

Substituting Eq. (S.4) into Eq. (S.3), we obtain two ordinary differential equations for
the unknowns C1(φ) and C2(φ)

C ′′
1 + C1 = 0, (S.5)

C ′′
2 + C2 − 2C1 = 0. (S.6)

In the case of θ = 90◦, the µ profile is symmetry with respect to the interface φ = 0◦.
The general solution reads

C1 = A sinφ+B cosφ, (S.7)

C2 = −Aφ cosφ+ C cosφ+D sinφ. (S.8)

The condition ∂µ
∂x = 0 at φ = −π/2 results in

B = 0, C = −π
2
A. (S.9)

The condition ∂µ
∂y = 0 and 1

2
∂µ
∂x = ∂3ψ

∂y3 at φ = 0◦ couples the Laplace equation with
the bi-harmonic equation, resulting in

C = 4a. (S.10)

The constant a is given by Eq. (S.2). The general solution of the Laplace and bi-
harmonic equations consists of the leading order analysis plus the near-field solution. As
demonstrated in Jacqmin (2000), the near-field solution only has numerical solutions,
which are nothing but the present numerical strategy.

S.3. Surface composition for the binary phase-field model

Fig. S.1 shows the determination of the surface composition for the binary phase-field
model based on Cahn’s theory (Cahn 1977). The intersection of the two curves 2

√
κ∆f

and Γ ′(ϕ) gives rise to the surface composition. The surface compositions ϕδ
S and ϕα

S

correspond to the equilibrium values at the substrate contacting the δ and α phases,
respectively.
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S.4. Young’s law and natural boundary condition

For the binary a-b system, the bulk equilibrium condition δF/δϕ = µe leads to

∂f

∂ϕ
− 2κ∇2ϕ = µe. (S.1)

Both sides of Eq. (S.1) multiplying by ∇ϕ and integrating once with the condition that
the composition gradient vanishes at the boundary give rise to

f(ϕ)− f(ϕa

e)− µe(ϕ− ϕa

e) = κ(∇ϕ)2.

By using this equilibrium condition, the interfacial tension is calculated as

γab = 2κ

∫ ∞

−∞

(∇ϕ)2dX. (S.2)

For a flat substrate with the normal vector n = [0, 1, 0], the surface equilibrium
condition is depicted by the following equation

2κ dϕ/dy = dΓ/dϕ.

Multiplying by dϕ/dm where m denotes the normal direction of the droplet-matrix
interface at the triple junction, and integrating from −∞ to ∞ yield∫ ∞

−∞

2κ

(
dϕ

dy

dϕ

dm

)
dm =

∫ ∞

−∞

2κ

(
dϕ

dm

)2

cos θdm =

∫ ∞

−∞

dΓ

dϕ

dϕ

dm
dm =

∫ ϕδ
S

ϕα
S

dΓ

dϕ
dϕ,

where the intersection angle between y and m is the Young’s angle θ. If the surface
compositions are identical to the equilibrium values of the bulk region, we have ϕa

e = ϕa
S.

Hence, with the equation Eq. (S.2) and the condition that Γ (ϕa
e) = γaS, we obtain

γαδ cos θ = γδS − γαS.

It is highly noteworthy that if the surface composition is not equivalent to the bulk
composition, the integration should be calculated as∫ ∞

−∞

2κ
dϕ

dy

dϕ

dm
dm =

∫ ϕα
e

ϕα
S

2κ
dϕ

dy
dϕ+

∫ ϕδ
e

ϕα
e

2κ
dϕ

dy

dϕ

dm
dm+

∫ ϕδ
S

ϕδ
e

2κ
dϕ

dy
dϕ.

In the end, we obtain the modified Young’s equation

γαδ cos θ = γδS − γαS,

with

γαS = Γ (ϕα

S) +

∫ ϕα
e

ϕα
S

2κ
dϕ

dy
dϕ;

γδS = Γ (ϕδ

S) +

∫ ϕδ
e

ϕδ
S

2κ
dϕ

dy
dϕ.

The derivation for the ternary system is nothing but straightforward.

S.5. Surface equilibrium derivation

At the substrate, the free energy functional is expressed as

F =

∫
Ω

[
κ1(∇ϕ1)

2 + κ2(∇ϕ2)
2 + κ3(∇ϕ3)

2

]
dΩ +

∫
S

Γ (ϕ1, ϕ2, ϕ3) dS.
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The equilibrium condition δF/δϕi = 0 leads to∫
Ω

−2κi∇2ϕidΩ +

∫
S

(∂Γ/∂ϕi) dS = 0.

By using the Gaussian theorem transforming the volume integral into surface integral,
we have ∫

S

−2κi∇ϕi · n dS +

∫
S

(∂Γ/∂ϕi) dS = 0.

Therefore, the following boundary condition is achieved

2κi∇ϕi · n− ∂Γ/∂ϕi = 0.

S.6. Capillary force and Young-Laplace equation

The increase rate of the kinetic energy for the convection with velocity u due to the
capillary force f s is expressed as

dEK

dt
=

∫
Ω

f s · u dΩ.

The decrease rate of the free energy is given by

dEf

dt
=

∫
Ω

K−1∑
j=1

(
δF

δϕj

− δF

δϕK

)
∂ϕi

∂t
dΩ,

which can be rewritten as by using the convection equation

dEf

dt
= −

∫
Ω

K−1∑
j=1

(µj − µK)∇ · (uϕj) dΩ.

By using the Leibniz integration, we obtain

dEf

dt
= −

K−1∑
j=1

(µj−µK)(uϕj)

∣∣∣∣
∂Ω

+

∫
Ω

K−1∑
j=1

ϕj∇(µj−µK)·u dΩ =

∫
Ω

K−1∑
j=1

ϕj∇(µj−µK)·u dΩ.

With the condition that dEf/dt+ dEK/dt = 0, we obtain the capillary force

f s = −
K−1∑
j=1

ϕj∇(µj − µK).

Considering a droplet with a radius R inside a domain, the equilibrium equation in a
polar coordinate reads

µe

i =
∂f

∂ϕi

− 2κi

(∂2ϕi

∂r2
+

1

r

∂ϕi

∂r

)
, i = 1, 2, 3.

Multiplying by ∂ϕi/∂r, integrating from 0 (droplet center) to ∞, and summing the three
equations yield(

f −
K∑

j=1

µe

jϕ
e

j

)∣∣∣∣
0

−
(
f −

K∑
j=1

µe

jϕ
e

j

)∣∣∣∣
∞

=

∫ ∞

0

2κ

r

K∑
j=1

(
∂ϕj

∂r

)2

dr.

The right hand side may be approximated by γαδ/R. With the definition of the ther-
modynamic pressure, P = f −

∑K

j=1
µe

jϕ
e
j , the Young Laplace pressure, ∆P = γαδ/R is

replicated.
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S.7. Energy law

Multiplying both sides of Eq. (6.6) in the main text with u and integrating over the
domain yield the time evolution of the kinetic energy as

dE
dt

=

∫
Ω

d

dt

(1
2
ρu2

)
dΩ =

∫
Ω

∇ ·
[
η
(
∇u+∇uT

)]
· u dΩ +

∫
Ω

−∇p · udΩ +

∫
Ω

fs · u dΩ.

With the constraint of ∇ ·u = 0 and no-slip boundary condition, the viscous dissipation
is expressed as ∫

Ω

∇ ·
[
η
(
∇u+∇uT

)]
· u dΩ = −

∫
Ω

η∇u : ∇u dΩ ⩽ 0.

By writing the pressure as −p = −p0+ f −
∑K

j=1
µjϕj, we have

∫
Ω
−∇p0 ·u = 0 by using

the Leibniz integration with no-slip boundary condition and ∇ · u = 0. Combining the
rest term in the pressure with fs results in∫

Ω

[
fs +∇(f −

K∑
j=1

µjϕj)
]
· u dΩ = −

∫
Ω

K∑
j=1

∇ ·
(
2κj∇ϕj ⊗∇ϕj

)
· u dΩ.

This term corresponds to the Kortweg stress and is cancelled with the time evolution in
the free energy functional, as demonstrated in the following.
The time derivative of the free energy functional reads

dF
dt

=

∫
Ω

d

dt

[
f(ϕ) +

K∑
j=1

κj(∇ϕj)
2

]
dΩ +

∫
S

dΓ (ϕ)

dt
dS. (S.1)

With the following relation for the total time derivative

d∇ϕi

dt
=
∂∇ϕi

∂t
+ u · ∇∇ϕi.

Eq. (S.1) is further rewritten as

dF
dt

=

∫
Ω

K∑
j=1

[
∂f

∂ϕj

dϕj

dt
+ 2κj∇ϕj ·∇∂tϕj + 2κj∇ϕj ·u·∇∇ϕj

]
dΩ +

∫
S

dΓ (ϕ)

dt
dS. (S.2)

With the Leibniz integration and denoting the outer and inner normal vector of the
substrate as n̂ and n, respectively, Eq. (S.2) reads∫

Ω

K∑
j=1

[( ∂f
∂ϕj

−∇·2κj∇ϕj

)dϕj

dt
+(∇·2κj∇ϕj)u·∇ϕj+2κj∇ϕj ·u·∇∇ϕj

]
dΩ

+

∫
S

K∑
j=1

(
2κj∇ϕj ·n̂+∂Γ/∂ϕj

)∂ϕj

∂t
dS

=

∫
Ω

K∑
j=1

(
µj

dϕj

dt
+ fj · u

)
dΩ +

∫
S

K∑
j=1

(
− 2κj∇ϕj · n+ ∂Γ/∂ϕj

)∂ϕj

∂t
dS, (S.3)

where the chemical potential µj and the Kortweg force fj are defined as

µj = ∂f/∂ϕj − 2κj∇2ϕj, fj = ∇ · (2κj∇ϕj ⊗∇ϕj).

Here, we have applied the relation ∇ · (∇ϕj ⊗∇ϕj) = (∇ · ∇ϕj)∇ϕj +∇ϕj · ∇∇ϕj and
assumed the no-slip boundary condition on the substrate, namely ∂

∂t = d
dt , on S. By
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applying the following evolution equations

dtϕi = ∇ ·
(
Li∇µi

)
on Ω,

τi∂tϕi =
(
2κi∇ϕi · n− ∂Γ/∂ϕi

)
on S,

we obtain the energy dissipation law of the system as

dF
dt

+
dE
dt

=−
∫
Ω

K∑
j=1

Lj(∇µj)
2dΩ −

∫
S

K∑
j=1

(1/τj)
(
2κj∇ϕj · n− ∂Γ/∂ϕj

)2
dS

−
∫
Ω

η∇u : ∇u dΩ ⩽ 0, ∀(x, t) ∈ Ω ∪ S × [0, T t]. (S.4)

The additional term
∑K

j=1
fj · u in the time evolution of the free energy cancels out with

the Kortweg stress term in the time evolution of the kinetic energy. Here, Lj and τj
are mobilities in the bulk and on the substrate S, respectively. These mobilities must
be no-negative to fulfill the energy dissipation law. Noteworthily, the mobility can be
composition dependent. When the mobility matrix M = (Mij) ∈ RK×K is positive semi-
definite, it can be readily shown that the energy law stated in Eq. (S.4) is also satisfied.
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Parameters Description Expression
x∗ Characteristic length -
σ∗ Characteristic interfacial tension -
D∗ Characteristic diffusivity -
t∗ Time x∗2/D∗

α∗ Ratio of free energy density over surface tension (RgT/vm)/(σ∗/x∗)
η∗ Dynamic viscosity σ∗ x∗/D∗

u∗ Velocity D∗/x∗

f∗ Free energy density α∗(σ∗/x∗)
ρ∗ Density σ∗ x∗/D∗2

p∗ Pressure σ∗/x∗

τ∗ Time relaxation σ∗ ∗ x∗2/D∗

M∗ Mobility D∗/f∗

κ∗ Gradient energy coefficient σ∗x∗

Table S.1. Scaling factors for physical parameters.

S.8. Non-dimensionalization and numerical discretization

All the physical parameters are non-dimensionalized by the characteristic length x∗,
reference surface tension σ∗, and diffusivity D∗. These three values are chosen according
to the specific time and length scales of the particular system as well as the focused
physical process. With these three reference values, we have the following scaling factors
for all the other physical parameters, as shown in Tab. S.1. Substituting the scaling
factors into the Cahn-Hilliard-Navier-Stokes (CHNS) model, we obtain

∂ϕi

∂(t∗t̃)
+
(
u∗ ũ

)
· ∇̃ϕi

x∗
=

∇̃
x∗2

·

[
K∑

j=1

D∗

f∗
M̃ij∇̃

(
f∗

∂f̃

∂ϕj

− 2σ∗κ̃j

x∗
∇̃2ϕj

)]
,

ρ∗ρ̃ u∗
(

∂ũ

∂(t∗ t̃ )
+ũ· ∇̃(u∗ũ)

x∗

)
=

K−1∑
j=1

ϕj

∇̃
x∗
f∗

(
µ̃K −µ̃j

)
−∇̃(p∗p̃)

x∗
+

∇̃
x∗

·
[
η∗η̃ u∗

∇̃(ũ)+∇̃(ũT )

x∗

]
,

∇̃
x∗

· (u∗ ũ) = 0,

τ∗τ̃i
∂ϕi

∂t∗t̃
= 2σ∗x∗κ̃i

(
∇̃
x∗
ϕi

)
· n− σ∗ ∂Γ̃

∂ϕi

.

After simplification, the non-dimensionalized form of the CHNS equation reads

∂ϕi

∂t̃
+ ũ · ∇̃ϕi =

∇̃
P é

·

[
K∑

j=1

M̃ij∇̃
(
∂f̃

∂ϕj

− 2κ̃j

α∗ ∇̃2ϕj

)]
,

ρ̃

(
∂ũ

∂t̃
+ ũ · ∇̃ ũ

)
= − 1

We

K−1∑
j=1

ϕj∇̃
(
µ̃j − µ̃K

)
− ∇̃p̃
We

+
1

Re
∇̃ ·

[
η̃(∇̃ ũ+ ∇̃ ũT )

]
,

∇̃ · ũ = 0,

τ̃i
∂ϕi

∂t̃
= 2 κ̃i∇̃ϕi · n− ∂Γ̃

∂ϕi

, i = 1, 2, 3.

(S.1)

The dimensionless quantities Re, We, and P é are calculated as

Re =
ρ∗u∗x∗

η∗
, We =

ρ∗u∗2x∗

σ∗ , P é =
u∗x∗

D∗ .
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The domain Ω is discretized into ΩN : [x1, ..., xNx ] × [y1, ..., yNy ] × [z1, ..., zNz ]. The
parameters Nx, Ny, Nz ∈ N are the number of grid cells in the x, y, and z dimensions,
respectively. The substrate S is discretized into SN : [x1, ..., xNx

] × [z1, ..., zNz
]. The time

interval [0, Tt] is approximated by [t1, ..., tT ]. The space and time steps are defined as
∆x = xi+1 − xi, ∆y = yj+1 − yj, ∆z = zk+1 − zk, and ∆t = tl+1 − tl, respectively.
The indexes l, i, j, k ∈ N. The finite difference method and the explicit Euler scheme are
implemented to solve the evolution equations Eqs. (S.1) with the equidistant Cartesian
mesh on a staggered grid, as shown in Fig. S.2(I). The blue and red cells with a size
of ∆x = ∆y = ∆z are for the time evolution of the composition in the bulk region Ω
and on the substrate S, respectively. In the staggered mesh, the scalar variables, such
as composition ϕi and pressure p, are represented by the solid points for the bulk and
hollow dots for the substrate. The vector variables, such as velocity u and gradient of
composition ∇ϕi, in the x (or z) and y directions are depicted by the triangle, square
symbols, respectively, which locate on the border of two adjacent cells as defined by
the upwind scheme. We adopt Neumann boundary conditions for compositions ϕ on the
boundary of bulk region ∂Ω, no-flux boundary condition for the chemical potential on
∂Ω and substrate S, no-slip boundary condition for the velocity on ∂Ω and S. The time
step ∆t for the explicit Euler scheme is chosen according to the von Neumann stability
analysis as (Wang et al. 2012)

∆t < ζmin

{
Re

3

( 1

∆x2
+

1

∆y2
+

1

∆z2

)−1

,
∆x

|ux|max

,
∆y

|uy|max

,
∆z

|uz|max

, ∆tCH

}
,

∆tCH =
1

2d maxDi

min{∆x2,∆y2,∆z2} + 2d maxMκi

min{∆x4,∆y4,∆z4}
,

where ζ defines a safety parameter less than unity, d is the dimension (d = 2, 3), and
|ux|max and |uy|max, and |uz|max are the maximal velocity in the x, y, and z directions,
respectively. The numerical solutions of the evolution equations Eqs. (S.1) are conducted
within the phase-field simulation framework Pace3D (Nestler et al. 2005; Wang et al.
2012; Zhang et al. 2022). Parallelization of the numerical algorithm is achieved with
Message Passing Interface (MPI) techniques. The simulations are performed on the
parallel computer bwUniCluster of Baden-Wuerttemberg equipped with Intel Xeon Gold
CPUs in the environment of Red Hat Enterprise. The 2D simulations take about two
hours by using 40 cores. The 3D simulations take about one day by using 160 cores.

S.9. Numerical convergence

In this part, we perform simulations on a regular mesh with a size of (Nx×∆x)×(Ny×
∆y). The Navier-Stokes equation is not considered in this section. The mesh fineness (or
resolution) ∆x = ∆y is varied to testify the convergence of the numerical simulation
for the Cahn-Hilliard equation, while fixing (Nx × ∆x). The parameters adopted are
κ1 = κ2 = κ3 = 2, τ1 = τ2 = τ3 = 1, D1 = D2 = D3 = 1, g33 = 0.2 and the rest wall
free energy density coefficients are gij = 0. The parameters for the free energy density
are chosen as displayed in Fig. 1(I) of the main text. At the beginning, a semicircular
droplet with a radius R = 40 (∆x = 1) is placed on top of the substrate. As illustrated
in Fig. S.3(I), the equilibrium contact angle θ converges to the theoretical value 63◦ with
the reduction in ∆x. Based on this analysis and for the sake of simulation accuracy and
speed, we choose the resolution ∆x = 1.0 for all the following simulations. Besides, one
example for the time evolution of the contact angle towards the equilibrium value is
presented in Fig. S.3(II).
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Figure S.2. Illustration of the staggered mesh for the numerical discretization: Four
neighbouring cells are shown in the figure. The blue and the red regions denote the bulk and the
substrate cells, respectively. The size of the cells is ∆x = ∆y = ∆z. The solid points represent
the scalar variable in the bulk and the hollow points depict the scalar variable on the substrate.
The velocity of convection in the x (or z), y dimension is described by the triangle and the
square, respectively (red for substrate, blue for bulk). The grey cells are used to represent the
bulk of the substrate and not involved for the evolution of the equations. (I) x-y plane; (II) z-y
plane.

Figure S.3. Numerical convergence of the Cahn-Hilliard equation for the contact angle. (I) The
convergence of the equilibrium Young’s angle θ with reducing mesh fineness ∆x for an initial
droplet radius R = 40. (II) The contact angle θ approaching equilibrium with time for an initial
droplet radius R = 40 with different mesh fineness ∆x, Nx = 252/∆x, Ny = 193/∆x. (III) The
Young’s angle θ with increasing the droplet radius R from simulations. The matrix composition
is set to be the equilibrium value according to the binodal line in the phase diagram.

The Young’s angle θ for different initial droplet radius R is demonstrated in
Fig. S.3(III). Here, the mesh fineness is set as 1.0, while all other simulation parameters
are identical to Fig. S.3(I). We observe the deviation of θ for the small droplet, especially
when R = 20. The reason can be attributed to the curvature effect which changes the
equilibrium composition of the droplet. For tiny droplets, its huge curvature results
in the enormous composition changes off the equilibrium. Therefore, the composition
related surface tension is varied and produces the large deviations of the simulated
contact angle compared with larger droplets. As can be noticed in Fig. S.3(III), the
contact angle varies with less than 1◦ for droplets with R > 40, which proves the well
convergence of our model and of the algorithm measuring the contact angles.
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