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1 Uncertainty analysis of S0, κ and B0 for the
channel/duct experiments
(Figure 3 of main paper)

The uncertainty of κ and S0 for the channel experiments of figure 3 in the
main text is estimated as follows. First the uncertainty of the linear slope S0

is estimated as twice the standard deviation of (Ξ − 1.1Y ) between y+ = 600
and Y = 0.5, which is a good measure of the width of the linear portion of
Ξ0 in figure 4a of the main text. The choice of the lower limit of y+ = 600
for the estimate of the width of this linear portion is motivated by Monkewitz
(2021), who noted the late start of the overlap in channel and pipe flow. At
any rate, the influence of this choice on the following uncertainty estimates is
weak. The resulting uncertainty of S0 is ±2σ = ± 0.406, shown in figure 1.
The uncertainties of κ and of the log-law constant B0 are then determined as
differences between the reference values [κ,B0] = [0.417, 5.5] for S0 = 1.1 and
the values of κ and B0 for the modified S0 + 2σ = 1.506, S0 − 1σ = 0.894 and
S0 − 2σ = 0.694. They are obtained by minimizing the difference between U+

∞,
the mean velocity corrected for finite Reynolds number effects as in the main
paper, and the sum of linear and logarithmic laws, i.e.

∆(S0, B0) = U+
∞ − { 1

κ
lnReτ + S0 Y } − { 1

κ
lnY +B0} (1)

for each of the S0 values.

Summary of uncertainty analysis for the channel/duct ex-
periments

The estimate of S0 = 1.15 was derived in section 2 of the main paper from
channel DNS and has been slightly lowered to S0 = 1.1 for the analysis of
experimental channel/duct data. The resulting best fit κ = 0.417 is consistent

1



0

10

20

30

40

50

60

70

1 1.5 2 2.5 3 3.5 4

#
 o

f 
d

a
ta

 i
n

 b
in

- 1.1Y

Figure 1: Analysis of the experimental channel data of figure 3 in the main text.
Blue •, distribution of (Ξ∞ − 1.1Y ) between y+ = 600 and Y = 0.5 in bins of
0.15. Red —, fitted Gaussian distribution; - - -, mean of 2.40 (κ = 1/2.40 =
0.417); · · · , mean ±σ (σ = 0.203).

with the value deduced from the mean velocity derivative of channel DNS in
the main paper, but does not produce the optimal collapse in figures 2(c) and
(d). With S0 = 0.897, κ = 0.405 and B0 = 5.0, the data collapse is seen
to be improved in figure 4, suggesting that the optimal parameters for the
channel/duct experiments considered are closer to S0 ≊ 1 and κ ≊ 0.41.
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1.1 Channel baseline case S0 = 1.1

The baseline case considered here corresponds to figure 4 of the main text. To
complement this figure, U+

∞, corrected for finite Reynolds number effects, minus
both linear part and log law (equation 1) is shown as figures 2c and 2d.
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Figure 2: Baseline case of figure 3 in the main text with S0 = 1.1 and κ = 0.417.
(a): same as fig. 3a of main text. (b): same as fig. 3c of main text. (c): panel
(b) minus log law, i.e. U+

∞ − [(1/0.417) lnReτ + 1.1Y ]− [(1/0.417) lnY + 5.5];
vertical grey line with arrows, upper limit Y = 0.5 of data used for the Gaussian
distribution of figure 1. (d) Data of panel (c) versus y+; vertical grey line with
arrows, lower limit y+ = 600 of data used for the Gaussian distribution of figure
1.
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1.2 Channel with high value of S0 = 1.1 + 2 σ = 1.506

After changing S0 to the high value of 1.506, κ and the log law constant B0 are
readjusted to minimize ∆ in equation (1) over the largest possible interval of Y .
This procedure yields κ = 0.423 and B0 = 5.6
Note, that for this high value of S0, the extent of the good fit of equation (1) is
reduced from Y ⪅ 0.65 for the baseline case of figure 2 to Y ⪅ 0.4.
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Figure 3: Analogous to figure 2 for the high slope S0 = 1.1 + 2σ = 1.506, with
the log law parameters adjusted to κ = 0.423 and B0 = 5.6. Panels (c) and (d):
U+
∞ − [(1/0.423) lnReτ + 1.506Y ]− [(1/0.423) lnY + 5.6] versus Y and y+.
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1.3 Channel with moderately reduced value of S0 = 1.1−
1σ = 0.897

Using the same procedure as in section 1.2 for the moderately low value of
S0 = 0.897 results in κ = 0.405 and B0 = 5.0, as shown in figure 4 below. For
this value of S0, the extent of the good fit of equation (1) extends to Y ⪅ 0.7,
similar to the baseline case of figure 2. More importantly, the data scatter is
reduced relative to the baseline. Hence, the κ = 0.417, deduced from channel
DNS in section 2 of the main paper, may be on the high side.
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Figure 4: Analogous to figure 2 for the reduced slope S0 = 1.1 − 1σ = 0.897,
with the log law parameters adjusted to κ = 0.405 and B0 = 5.0. Panels (c)
and (d): U+

∞− [(1/0.405) lnReτ +0.897Y ]− [(1/0.405) lnY +5.0] versus Y and
y+.
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1.4 Channel with strongly reduced value of S0 = 1.1−2σ =
0.694

The same procedure as in sections 1.2 for the low value of S0 = 0.694 results in
κ = 0.4 and B0 = 4.9, as shown in figure 5. For this low value of S0, the fit in
panels (c) and (d) appears to be not quite as good as in figure 4 above, but the
Reτ ’s are too low to allow a more precise determination of the optimal values
for S0, κ and B0.
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Figure 5: Analogous to figure 2 for the low slope S0 = 1.1 − 2σ = 0.694, with
the log law parameters adjusted to κ = 0.400 and B0 = 4.9. Panels (c) and (d):
U+
∞ − [(1/0.400) lnReτ + 0.694Y ]− [(1/0.400) lnY + 4.9] versus Y and y+.
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2 Uncertainty analysis of S0, κ and B0 for the
Superpipe experiment
(Figure 5 of main paper)

The uncertainty of κ and S0 for the Superpipe experiments of figure 5 in the
main text is estimated as in section 1 for the channel.

First the uncertainty of the linear slope S0 is “generously” estimated as twice
the standard deviation of (Ξ− 2.5Y ) between y+ = 103 and Y = 0.5, which is
a good measure of the width of the linear portion of Ξ in figure 5a of the main
text. The choice of the lower limit of y+ = 103 for the estimate of the width of
this linear portion is motivated by McKeon et al. (2004) and Monkewitz (2021),
who noted the late start of the overlap in pipe flow. The resulting uncertainty
of S0 is ±2σ = ± 0.544, shown in figure 6.
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Figure 6: Analysis of the Superpipe data of figure 5 in the main text. Blue
•, distribution of Ξ0 − 2.5Y between y+ = 103 and Y = 0.5 in bins of 0.15
(Reτ = 5.3 105 not included in PDF). Red —, fitted Gaussian distribution; - -
-, mean of 2.31 (κ = 1/2.31 = 0.433); · · · , mean ±σ (σ = 0.272).

The uncertainties of κ and of the log-law constant B0 are then determined
as differences between the reference values [κ, S0] = [0.433, 5.9] for S0 = 2.5 and
the best fit values of κ and B0 for the modified S0±2σ = 2.5± 0.544, obtained
by minimizing ∆ in equation (1).

Summary of uncertainty analysis for the Superpipe exper-
iment

As shown in section 3 of the main paper, the currently available pipe DNS do
not yield a large variety of S0 values. Therefore, the baseline value of S0 = 2.5
was derived directly from the Superpipe data. Hence, S0 = 2.5, κ = 0.435 and
B0 = 5.9 correspond to the optimal choice.
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2.1 Pipe baseline case S0 = 2.5

The baseline case corresponds to figure 6 of the main text. To complement this
figure, U+ minus the sum of linear part and log law (equation 1) is shown as
figures 7c and 7d.
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Figure 7: Baseline case of figure 5 in the main text with S0 = 2.5 and κ = 0.433.
(a): same as fig. 5a of main text. (b): same as fig. 6c of main text. (c): panel
(b) minus log law, i.e. U+ − [(1/0.433) lnReτ + 2.5Y ]− [(1/0.433) lnY + 5.9];
vertical grey line with arrows, upper limit Y = 0.5 of data used for the Gaussian
distribution of the above figure 6. (d) Data of panel (c) versus y+; vertical grey
line with arrows, lower limit y+ = 103 of data used for the Gaussian distribution
of figure 6.
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2.2 Pipe with high value of S0 = 2.5 + 2 σ = 3.044

After changing S0 to the high value of 3.044, κ and the log law constant B0

are readjusted until ∆ in equation (1) is closest to zero over the largest possible
interval of Y . This procedure yields κ = 0.450 and B0 = 6.6
Note, that for this high value of S0, the extent of the good fit of equation (1) is
reduced from Y ⪅ 0.65 for the baseline case of figure 7 to Y ⪅ 0.4.
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Figure 8: Analogous to figure 7 for the high slope S0 = 2.5 + 2σ = 3.044, with
the log law parameters adjusted to κ = 0.45 and B0 = 6.6. Panels (c) and (d):
U+ − [(1/0.45) lnReτ + 3.044Y ]− [(1/0.45) lnY + 6.6] versus Y and y+.
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2.3 Pipe with low value of S0 = 2.5− 2σ = 1.956

Using the same procedure as in section 2.2 for the low value of S0 = 1.956 results
in κ = 0.425 and B0 = 5.6, as shown in figure 9 below. For this low value of
S0, the extent of near-zero ∆’s in equation (1) increases to Y ⪅ 0.7, similar to
the baseline case of figure 7. However, the data in figure 9c are seen to have
a positive “hump” beyond Y ≈ 0.3 − 0.4. Therefore, even if the data scatter
in figure 9 is somewhat reduced relative to figure 7, the baseline κ = 0.435 of
figure 7 appears to be near the optimal fit. It also happens to be nearly equal
to the original value given by Zagarola & Smits (1998)!
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Figure 9: Analogous to figure 7 for the low slope S0 = 2.5 − 2σ = 1.956, with
the log law parameters adjusted to κ = 0.425 and B0 = 5.6. Panels (c) and (d):
U+ − [(1/0.425) lnReτ + 1.956Y ]− [(1/0.425) lnY + 5.6] versus Y and y+.
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