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We here outline the structure of the MATLAB code used to generate resonant triads of gravity waves
in a circular cylinder of finite depth (corresponding to Table 1 presented in the main text). The main
feature of the code is the application of Theorem 1 to assess whether a triad exists for three given wave
modes satisfying the correlation condition; when the triad exists, we compute the corresponding critical
depth. Questions regarding the implementation of the code should be addressed to Matthew Durey
(matthew.durey@glasgow.ac.uk). The code was written and tested using MATLAB 2018a.

We consider a triad whose angular frequencies satisfy €27 + Q2 = Q3 and azimuthal wavenumbers
satisfy my + mga = mg (or om1 + om2 = om3 and m1 + m2 = m3 in the code). The script

Circular_cylinder find triads.m

exhaustively loops through all possible combinations of three wave modes, checking whether the triad
existence condition (Theorem 1) is satisfied for each combination. To reduce the number of combinations,
we introduce the positive integers m_max and n_max, which bound the maximum allowable values of the
azimuthal wavenumbers (m1,m2,m3) and radial wavenumber indices (n1,n2,n3) (lines 34 and 35). To
reproduce the results in Table 1 of the main text, the user should set m max = 3 and n_.max = 3; however,
different values (and thus more triad combinations) may be considered by the user. To further reduce the
number of combinations considered in the for loop (lines 47 to 115), we consider the following restrictions

e mg3 > 0, where the case mg < 0 may be recovered by mapping (m1, ma) — (—mi, —ma).
e m; < mg, where the case m; > mo may be recovered by swapping the roles of modes 1 and 2.

The main computations are summarised as follows. In lines 37 to 39, we define the angular frequency
for a given wavenumber and fluid depth. In lines 40 to 45, we define storage vectors, which will be
populated by elements characterising each triad, namely the radial wavenumbers (k1_vec, etc.), azimuthal
wavenumbers (ml_vec, etc.), radial wavenumber indices (nl_vec, etc.), and the critical depths (h_vec).
The main computations are performed in lines 46 to 115, where we loop over all permissible values of my,
mg and mg (satisfying mj + me = ms3), and then proceed as follows:

1. Determine all the admissible radial wavenumbers (K, Ko and K3, denoted k1, k2 and k3 in the
code), with each radial wavenumber satisfying the radial no-flux boundary condition (lines 52 to

75). This calculation uses the zerobess.m function developed by Jonas Lundgren for calculating
the roots of Bessel functions of first kind (downloaded from MATLAB Central).

2. Loop through the candidate triads for given k1, k2 and k3 (lines 76 to 112).

3. Determine if the resonance condition (see Theorem 1) is satisfied for the given combination of wave
modes (lines 86 to 88). If the resonance condition is not satisfied, then the code skips steps 4 and
5 below, and moves to the next mode combination.

4. If the mode combination gives rise to a resonant triad, then compute the critical depth, h (lines 89
to 94).
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5. Store the values characterising the triad, appending to the existing storage vectors.

Finally, we compute the mean radial wavenumber, K = (K1 + K3 + K3), for each triad (denoted kmean)
in lines 116 to 118. Notably, some values of the critical depth may be repeated; this scenario corresponds
to the same triad being identified, but with the roles of modes 1 and 2 swapped.

We compute the correlation integral, € (defined analogously to equation (4.7) in the main text, but
with W3 replaced by U3), in lines 119 to 140. The code first defines vector functions corresponding to the
unnormalised Bessel functions defining each mode in the triad (Bl_vec, etc.). The normalisation factors
(N1_vec, etc.) are then computed (lines 125 to 129), and coupled with the Bessel functions to determine
the normalised radial functions C1, C2 and C3 (lines 130 to 134). We then compute the correlation integral,
with the radial parts computed using the MATLAB function integral and the angular parts computed
analytically (giving 27). Notably, the area, S, of the cylinder cross section is equal to m, whose reciprocal
appears as a prefactor in the definition of ’; as such, the prefactor of 2 in line 139 arises from simplifying
27 /m, with the 27 being the angular integral and 7 being the cross-sectional area. When the values of
m max and n_max are large, line 139 is very slow to compute; the user may prefer to exclude this line (and
subsequent uses of C_int) from the computation in such an eventuality.

The remainder of the code summarises the triads in various ways, and the user may choose to exclude
any of these sections. We briefly outline the different sections as follows.

e Define the  coefficient (see equation (4.11) in the main text) for each triad, as appears in the
weakly nonlinear analysis (lines 141 to 151). Here we map Q3 — —Q3 so that 1 + Qs + Q3 = 0,
consistent with our framework for the multiple-scales analysis.

e Plot the value of K;/K3 and K3/Kj3 for each triad, with each data point colour-coded by the
normalised critical depth, K3h.. The black curves denote the bounds of the triad existence region
(see Theorem 1).

e Plot all values of the critical depth, from largest to smallest (lines 175 to 189). The user may also
wish to plot all the unique values of the critical depth, changing line 180 to

~,h_ind| = sort(unique(h_vec ,’ descend’ ;
q

e Plot the histogram of critical depths, with a logarithmic (base 10) horizontal scale (lines 190 to
198). When large values of mmax and n-max are considered, this plot highlights the large number
of triads that exist only in shallower fluids.

e Plot the quantity ¢S (lines 199 to 211), as is used to define the coefficients, «;, arising in the weakly
nonlinear analysis (equation 4.10). For this section of code to run, lines 141 to 151 must be run first
(so as to define ).

e Output a table similar to Table 1 in the main text (lines 212 to 253), with the triads ordered by
decreasing critical depth. The user may choose whether to show repeated critical depths or not
(corresponding to the same triad but with modes 1 and 2 swapped): to show all triads, including
depth repetitions, set show_repeated_triads = true in line 219; to show only unique values of the
critical depth, set show_repeated_triads = false. The user may also wish to choose the maximum
number of triads to display in the table, defining the positive integer max number_to_display in
line 238. If the number of triads is smaller than max number _to_display, then all triads are listed.
Below the table, we output statements summarising whether repeated triads are included in the
table or not, and how many triads are presented in the table (lines 244 to 253).



