A linear-elastic-nonlinear-swelling theory for hydrogels. Part 2. Displacement formulation

Electronic supplementary material

Joseph J. Webber ${ }^{\mathbf{1}} \dagger$, Merlin A. Etzold ${ }^{\mathbf{1}}$ and M. Grae Worster ${ }^{\mathbf{1}}$
${ }^{1}$ Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

1. Experimental details

To carry out the motivating experiments for the drying cylinders, cubes of commerciallyavailable poly-(acrylamide-potassium-acrylate) copolymer (Deco Cubes ${ }^{\mathrm{TM}}$, JRM Chemical Inc, 4881 NEO Parkway, Cleveland, Ohio 44128, USA) were placed in deionised water and left to swell until they reached a steady size. These were then removed, and placed in a dish of deionised water, which was kept topped up through the process of the experiment such that it never dried out fully. No quantitative measurements were taken at any point, and the experiments were used solely to motivate the subsequent theoretical analysis that followed, with the key qualitative features (curved top and bottom interfaces) apparent.

2. A numerical scheme for solving equation (5.36)

Since the size of the domain on which this differential equation is to be solved changes in time, introduce the scaled variable $Y=Z / \mathcal{H}(T)$ and instead solve on $Y \in[0,1]$. Then

$$
\begin{equation*}
\frac{\partial}{\partial T} \rightarrow \frac{\partial}{\partial T}-\frac{Y}{\mathcal{H}} \frac{\partial \mathcal{H}}{\partial T} \frac{\partial}{\partial Y} \quad \text { and } \quad \frac{\partial}{\partial Z} \rightarrow \frac{1}{\mathcal{H}} \frac{\partial}{\partial Y} \tag{2.1}
\end{equation*}
$$

and equation (5.36) thus becomes, after rearrangement,

$$
\begin{align*}
& \frac{\partial \Phi}{\partial T}-\Phi^{1 / 3} \frac{\partial \Phi}{\partial Y} \int_{0}^{Y} \frac{\partial \Phi^{1 / 3}}{\partial T} \mathrm{~d} Y^{\prime}-\frac{\Phi^{1 / 3}}{\mathcal{H}} \frac{\partial \mathcal{H}}{\partial T} \frac{\partial \Phi}{\partial Y} \int_{0}^{Y} \Phi^{1 / 3} \mathrm{~d} Y^{\prime}= \\
& \quad \frac{\Phi}{\mathcal{H}^{2}} \frac{\partial}{\partial Y}\left[f(\Phi) \frac{\partial \Phi}{\partial Y}\right]-\frac{1}{\mathcal{H}}\left[\frac{2 f(\Phi)}{3 \mathcal{H}} \frac{\partial \Phi}{\partial Y}+Y\left(\phi^{2 / 3}-1\right) \frac{\partial \mathcal{H}}{\partial T}\right] \frac{\partial \Phi}{\partial Y}+2 \Phi^{4 / 3} U_{s}, \tag{2.2}
\end{align*}
$$

with the height $\mathcal{H}(T)$ set as

$$
\begin{equation*}
\mathcal{H}(T)=\left(\int_{0}^{1} \Phi^{1 / 3} \mathrm{~d} Y^{\prime}\right)^{-1} \tag{2.3}
\end{equation*}
$$

and the Neumann boundary condition replaced by

$$
\begin{equation*}
f(\Phi) \frac{\partial \Phi}{\partial Y}=\mathcal{H} U_{t} \quad \text { at } Y=1 . \tag{2.4}
\end{equation*}
$$

Now, discretising the domain $[0,1]$, and sampling at $Y=0, \Delta, \ldots, N \Delta$, let \boldsymbol{U} be the $(N+1)$ dimensional vector with $i^{\text {th }}$ component

$$
\begin{equation*}
U_{i}=\Phi((i-1) \Delta, T) \tag{2.5}
\end{equation*}
$$

\dagger Email address for correspondence: j.webber@damtp.cam.ac.uk
for $\Delta=1 / N$. Similarly define \boldsymbol{V} to have $i^{\text {th }}$ component

$$
\begin{equation*}
V_{i}=\left.\Phi((i-1) \Delta, T)^{-2 / 3} \frac{\partial \Phi}{\partial T}\right|_{Z=(i-1) \Delta} \tag{2.6}
\end{equation*}
$$

Also introduce the diagonal matrices \boldsymbol{U} with entries $U_{i}^{2 / 3}$ and \boldsymbol{D} with entries $D_{i}=\Phi^{1 / 3} \partial \Phi / \partial Y$ evaluated at $Y=(i-1) \Delta$,

$$
\begin{equation*}
\boldsymbol{U}=\operatorname{diag}\left(U_{1}^{2 / 3}, U_{2}^{2 / 3}, \ldots, U_{N+1}^{2 / 3}\right) \quad \text { and } \quad \boldsymbol{D}=\operatorname{diag}\left(D_{1}, D_{2}, \ldots, D_{N+1}\right) \tag{2.7}
\end{equation*}
$$

Then, the time derivative $\partial \Phi / \partial T$ in equation (2.2) can be replaced by $\boldsymbol{U} V$. It is also now possible to discretise the integrals, noticing that

$$
\int_{0}^{Y} \Phi^{-2 / 3} \frac{\partial \Phi}{\partial T} \mathrm{~d} Y \rightarrow \frac{1}{2 N} \underbrace{\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \tag{2.8}\\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right)}_{(N+1) \times N} \underbrace{\left(\begin{array}{cccccc}
1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 & 0 \\
0 & 0 & \ldots & 0 & 1 & 1
\end{array}\right)}_{N \times(N+1)} \boldsymbol{V}
$$

where the first matrix represents the integral and the second matrix product gives the values of $\Phi^{-2 / 3} \partial \Phi / \partial T$ in the centres of each grid space. This can be more concisely written $\boldsymbol{M} \boldsymbol{V}$, for

$$
\boldsymbol{M}=\frac{1}{2 N}\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \tag{2.9}\\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 2 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & 2 & 2 & \ldots & 2 & 1
\end{array}\right)
$$

an $(N+1) \times(N+1)$ matrix. Then, equation (2.2) can be rewritten in discretised form with

$$
\begin{equation*}
\left(\boldsymbol{U}-\frac{2}{3} \boldsymbol{D} \boldsymbol{M}\right) \boldsymbol{V}=\boldsymbol{F}(\boldsymbol{U}, \mathcal{H}, \dot{\mathcal{H}} ; \mathcal{M}, Q) \tag{2.10}
\end{equation*}
$$

where spatial derivatives are approximated as finite differences and \boldsymbol{F} represents the right-hand side terms. Then,

$$
\begin{equation*}
\frac{\partial \boldsymbol{U}}{\partial T}=\left[\left(\boldsymbol{U}-\frac{2}{3} \boldsymbol{D} \boldsymbol{M}\right)^{-1} \boldsymbol{F}(\boldsymbol{U}, \mathcal{H}, \dot{\mathcal{H}} ; \mathcal{M}, Q)\right] \boldsymbol{U} \tag{2.11}
\end{equation*}
$$

This is then solved with a predictor-corrector method. Let $\boldsymbol{U}^{(n)}=\boldsymbol{U}(n \Delta T)$, and use the same superscript notation for other quantities evaluated at $T=n \Delta T$, then

$$
\begin{align*}
& \boldsymbol{U}^{\left(n+\frac{1}{2}\right)}=\boldsymbol{U}^{(n)}+\frac{\Delta T}{2}\left[\left(\boldsymbol{U}^{(n)}-\frac{2}{3} \boldsymbol{D} \boldsymbol{M}^{(n)}\right)^{-1} \boldsymbol{F}\left(\boldsymbol{U}^{(n)}, \mathcal{H}^{(n)}, \dot{\mathcal{H}}^{(n)} ; \mathcal{M}, Q\right)\right] \boldsymbol{U}^{(n)} \text { and } \\
& \boldsymbol{U}^{(n+1)}=\boldsymbol{U}^{(n)}+\Delta T\left[\left(\boldsymbol{U}^{\left(n+\frac{1}{2}\right)}-\frac{2}{3} \boldsymbol{D} \boldsymbol{M}^{\left(n+\frac{1}{2}\right)}\right)^{-1} \boldsymbol{F}\left(\boldsymbol{U}^{\left(n+\frac{1}{2}\right)}, \mathcal{H}^{\left(n+\frac{1}{2}\right)}, \dot{\mathcal{H}}^{\left(n+\frac{1}{2}\right)} ; \mathcal{M}, Q\right)\right] \boldsymbol{U}^{\left(n+\frac{1}{2}\right)} \tag{2.12}
\end{align*}
$$

We impose the Dirichlet boundary condition on the base of the gel by requiring $U_{1}^{(n)}=1$ and the
evaporative Neumann condition at the top by requiring

$$
\begin{equation*}
\frac{U_{N+1}^{(n)}-U_{N}^{(n)}}{\Delta}=\frac{\mathcal{H}(T) U_{t}}{1+(4 \mathcal{M} / 3)\left(U_{N+1}^{(n)}\right)^{1 / 3}} \tag{2.13}
\end{equation*}
$$

This system was solved using Matlab for all of the plots and numerical results in this paper, carrying out the matrix inversion using mldivide. An example function which solves this equation is shown below for illustrative purposes.

3. Matlab code

function [phiReturns, dPhiReturns, hReturns] = numericalDry(M,
Ut, Us, times, N, dt)
\%NUMERICALDRY Numerically solve the governing equation for
the polymer fraction
\% field when drying of a cylinder from the top and sides.
Returns phiReturns, the polymer
fraction field; dPhiReturns, the Y-derivative of the
polymer fraction field; hReturns,
\% the height of the cylinder \mathcal\{H\}(T) -- all at the
specified timesteps.
\% M: the material parameter M
\% Ut: the non-dimensional flux Ut from the top
\% Us: the non-dimensional flux Us from the sides
\% times: the times to save values at
\% N: the number of spatial grid steps
\% dt: the timestep
\% ---
\% Number of steps to save at
savedSteps = max(size(times, 2), size(times, 1)); \% allow
for row/column vectors for time
\% *** Variables to return
phiReturns = NaN*ones ($\mathrm{N}+1$, savedSteps);
dPhiReturns = NaN*ones($\mathrm{N}+1$, savedSteps);
hReturns $=$ NaN*ones(1, savedSteps);
$\mathrm{t}=0$;
currentIndex = 1;
\% *** Key variables used at each timestep
p = ones $(N+1,1) ; \%$ polymer fraction, evaluated at edges of
cells

4

```
```

pMids = ones(N, 1); % polymer fraction, evaluated at

```
```

pMids = ones(N, 1); % polymer fraction, evaluated at
middles of cells

```
```

 middles of cells
    ```
```

```
dpMids = zeros(N, 1); % dPhi/dY, evaluated at middles of
    cells
dp = zeros(N+1, 1); % dPhi/dY, evaluated at edges of cells
dp(end) = Ut/(1+4*M/3); % (straight away, set evaporation
    flux from top)
```

h $=1$; \% scaled height of gel
hDot $=0 ; \% \mathrm{dH} / \mathrm{dT}$
\% *** Construct the matrix M
MBase $=\operatorname{zeros}(N+1, N+1)$;
for $k=2: N+1$
MBase $(\mathrm{k}, 1)=1 /(2 * N)$;
if (k~=2)
for $j=2:(k-1)$
MBase (k, j) $=1 / \mathrm{N}$;
end
end
MBase $(\mathrm{k}, \mathrm{k})=1 /(2 * N)$;
end
\% *** Loop until we've reached the final timestep
while (currentIndex $<=$ savedSteps)
holdP $=p ; \%$ introduce a holding variable for polymer
fraction to allow the predictor-corrector steps
\% Step forward by dt/2 and correct to improve stability
for timestep $=[\mathrm{dt} / 2 \mathrm{dt}]$
\% *** Diffusive bracket term
bktMids $=(1+(4 * M / 3) * p M i d s . \wedge(-2 / 3)) . * d p M i d s ;$
baseBkt $=\left(1+(4 * M / 3) * p(1)^{\wedge}(-2 / 3)\right) * d p(1)$;
endBkt $=U t * h$;
\% d[]/dY
dBkt $=N *[2 *(b k t M i d s(1)-b a s e B k t) ; ~ b k t M i d s(2: e n d)-$
bktMids (1:end-1); 2*(endBkt - bktMids(end))];
\% prefactor is the matrix $U-(2 / 3) D M$
prefactor $=$ diag(holdP.^(2/3)) - (2/3)*diag(dp.*
holdP.^(1/3))*MBase;
\% *** Advective terms on the right-hand side
advect $=\left(2 /\left(3 * h^{\wedge} 2\right)\right) *\left(1+(4 * M / 3) * h o l d P .{ }^{\wedge}(-2 / 3)\right) \cdot * d p$
$.^{\wedge} 2+\ldots$
(hDot/h)*linspace (θ, $1, \mathrm{~N}+1)^{\prime} . *\left(h o l d P .{ }^{\wedge}(2 / 3)-1\right)$
. ${ }^{d p}-\ldots$
(hDot/h)*MBase*holdP. ^(1/3);
\% The right-hand side
rhs $=$ holdP.*dBkt/h^2 + 2*holdP. ($4 / 3$)*Us - advect;
\% Calculate d(Phi)/dT using mldivide
dpdt = (prefactor \backslash rhs)./holdP. ${ }^{\wedge}(-2 / 3)$;
\% *** TIMESTEP
holdP = p + timestep*dpdt;
holdP(1) = 1; \% Dirichlet $B C$ on base
\% Get midpoint phis
pMids $=($ holdP $(1:$ end -1$)+$ holdP (2:end) $) / 2$;
\% Calculate d(Phi)/dY, including applying Neumann
BC on top
$\mathrm{dp}=\mathrm{N} *[2 *(\mathrm{pMids}(1)-\mathrm{holdP}(1))$; pMids(2:end)-pMids
(1:end-1); $h * U t /\left(N *\left(1+(4 * M / 3) * h o l d P(e n d){ }^{\wedge}(-2 / 3)\right)\right.$
)];
dpMids $=(\operatorname{dp}(1:$ end -1$)+d p(2:$ end $)) / 2 ;$
\% Calculate H and Hdot
hNew $=$ N/sum(pMids. ${ }^{\wedge}(1 / 3)$);
hDot $=(h N e w-h) / d t ;$
h = hNew;
end
\% Catch numerical errors
if(isnan(holdP))
break;
end
$\mathrm{p}=$ holdP;
\% Save the values if we're at a reporting step
if(t >= times(currentIndex))
phiReturns(:, currentIndex) $=p$;
dPhiReturns(:, currentIndex) = dp;
hReturns (currentIndex) $=\mathrm{h}$;
\% Increment next counter
currentIndex = currentIndex + 1;
end
$\mathrm{t}=\mathrm{t}+\mathrm{dt}$;
end
end

