
1

A linear-elastic-nonlinear-swelling theory for
hydrogels. Part 2. Displacement formulation

Electronic supplementary material

Joseph J. Webber1†, Merlin A. Etzold1 and M. Grae Worster1

1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge CB3 0WA, UK

1. Experimental details
To carry out the motivating experiments for the drying cylinders, cubes of commercially-

available poly–(acrylamide–potassium–acrylate) copolymer (Deco Cubes™, JRM Chemical Inc,
4881 NEO Parkway, Cleveland, Ohio 44128, USA) were placed in deionised water and left to
swell until they reached a steady size. These were then removed, and placed in a dish of deionised
water, which was kept topped up through the process of the experiment such that it never dried out
fully. No quantitative measurements were taken at any point, and the experiments were used solely
to motivate the subsequent theoretical analysis that followed, with the key qualitative features
(curved top and bottom interfaces) apparent.

2. A numerical scheme for solving equation (5.36)
Since the size of the domain on which this differential equation is to be solved changes in time,

introduce the scaled variable 𝑌 = 𝑍/H (𝑇) and instead solve on 𝑌 ∈ [0, 1]. Then
𝜕

𝜕𝑇
→ 𝜕

𝜕𝑇
− 𝑌

H
𝜕H
𝜕𝑇

𝜕

𝜕𝑌
and

𝜕

𝜕𝑍
→ 1

H
𝜕

𝜕𝑌
, (2.1)

and equation (5.36) thus becomes, after rearrangement,

𝜕Φ

𝜕𝑇
−Φ1/3 𝜕Φ

𝜕𝑌

∫ 𝑌

0

𝜕Φ1/3

𝜕𝑇
d𝑌 ′ − Φ1/3

H
𝜕H
𝜕𝑇

𝜕Φ

𝜕𝑌

∫ 𝑌

0
Φ1/3 d𝑌 ′ =

Φ

H2
𝜕

𝜕𝑌

[
𝑓 (Φ) 𝜕Φ

𝜕𝑌

]
− 1
H

[
2 𝑓 (Φ)

3H
𝜕Φ

𝜕𝑌
+ 𝑌

(
𝜙2/3 − 1

) 𝜕H
𝜕𝑇

]
𝜕Φ

𝜕𝑌
+ 2Φ4/3𝑈𝑠 , (2.2)

with the height H(𝑇) set as

H(𝑇) =
(∫ 1

0
Φ1/3 d𝑌 ′

)−1

, (2.3)

and the Neumann boundary condition replaced by

𝑓 (Φ) 𝜕Φ
𝜕𝑌

= H𝑈𝑡 at 𝑌 = 1. (2.4)

Now, discretising the domain [0, 1], and sampling at 𝑌 = 0, Δ, . . . , 𝑁Δ, let 𝑼 be the (𝑁 + 1)-
dimensional vector with 𝑖th component

𝑈𝑖 = Φ((𝑖 − 1)Δ, 𝑇), (2.5)

† Email address for correspondence: j.webber@damtp.cam.ac.uk

2

for Δ = 1/𝑁 . Similarly define 𝑽 to have 𝑖th component

𝑉𝑖 = Φ((𝑖 − 1)Δ, 𝑇)−2/3 𝜕Φ

𝜕𝑇

����
𝑍=(𝑖−1)Δ

. (2.6)

Also introduce the diagonal matrices U with entries 𝑈2/3
𝑖

and D with entries 𝐷𝑖 = Φ1/3 𝜕Φ/𝜕𝑌
evaluated at 𝑌 = (𝑖 − 1)Δ,

U = diag(𝑈2/3
1 , 𝑈

2/3
2 , . . . , 𝑈

2/3
𝑁+1) and D = diag(𝐷1, 𝐷2, . . . , 𝐷𝑁+1). (2.7)

Then, the time derivative 𝜕Φ/𝜕𝑇 in equation (2.2) can be replaced by U 𝑽. It is also now possible
to discretise the integrals, noticing that

∫ 𝑌

0
Φ−2/3 𝜕Φ

𝜕𝑇
d𝑌 → 1

2𝑁

©«

0 0 . . . 0
1 0 . . . 0
...

...
. . .

...

1 1 . . . 0
1 1 . . . 1

ª®®®®®®¬︸ ︷︷ ︸
(𝑁+1)×𝑁

©«

1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
...

. . .
...

...

0 0 . . . 1 1 0
0 0 . . . 0 1 1

ª®®®®®®¬︸ ︷︷ ︸
𝑁×(𝑁+1)

𝑽, (2.8)

where the first matrix represents the integral and the second matrix product gives the values of
Φ−2/3 𝜕Φ/𝜕𝑇 in the centres of each grid space. This can be more concisely written M 𝑽, for

M =
1

2𝑁

©«

0 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
1 2 1 0 . . . 0 0
...

...
...

...
. . .

...
...

1 2 2 2 . . . 2 1

ª®®®®®®¬
, (2.9)

an (𝑁 + 1) × (𝑁 + 1) matrix. Then, equation (2.2) can be rewritten in discretised form with(
U − 2

3
DM

)
𝑽 = 𝑭

(
𝑼, H , ¤H ; M, Q

)
, (2.10)

where spatial derivatives are approximated as finite differences and 𝑭 represents the right-hand
side terms. Then,

𝜕𝑼

𝜕𝑇
=

[(
U − 2

3
DM

)−1
𝑭
(
𝑼, H , ¤H ; M, Q

)]
U . (2.11)

This is then solved with a predictor-corrector method. Let 𝑼 (𝑛) = 𝑼(𝑛Δ𝑇), and use the same
superscript notation for other quantities evaluated at 𝑇 = 𝑛Δ𝑇 , then

𝑼 (𝑛+ 1
2) = 𝑼 (𝑛) + Δ𝑇

2

[(
U (𝑛) − 2

3
DM (𝑛)

)−1
𝑭
(
𝑼 (𝑛) , H (𝑛) , ¤H (𝑛) ; M, Q

)]
U (𝑛) and

𝑼 (𝑛+1) = 𝑼 (𝑛) + Δ𝑇

[(
U (𝑛+ 1

2) − 2
3

DM (𝑛+ 1
2)
)−1

𝑭
(
𝑼 (𝑛+ 1

2) , H (𝑛+ 1
2) , ¤H (𝑛+ 1

2) ; M, Q
)]

U (𝑛+ 1
2) .

(2.12)

We impose the Dirichlet boundary condition on the base of the gel by requiring 𝑈
(𝑛)
1 = 1 and the

3

evaporative Neumann condition at the top by requiring

𝑈
(𝑛)
𝑁+1 −𝑈

(𝑛)
𝑁

Δ
=

H(𝑇)𝑈𝑡

1 + (4M/3)
(
𝑈

(𝑛)
𝑁+1

)1/3 . (2.13)

This system was solved using Matlab for all of the plots and numerical results in this paper,
carrying out the matrix inversion usingmldivide. An example function which solves this equation
is shown below for illustrative purposes.

3. Matlab code

1 function [phiReturns , dPhiReturns , hReturns] = numericalDry(M,

Ut, Us, times, N, dt)

2 %NUMERICALDRY Numerically solve the governing equation for

the polymer fraction

3 % field when drying of a cylinder from the top and sides.

Returns phiReturns , the polymer

4 % fraction field; dPhiReturns , the Y-derivative of the

polymer fraction field; hReturns,

5 % the height of the cylinder \mathcal{H}(T) -- all at the

specified timesteps.

6
7 % M: the material parameter M

8 % Ut: the non-dimensional flux Ut from the top

9 % Us: the non-dimensional flux Us from the sides

10
11 % times: the times to save values at

12
13 % N: the number of spatial grid steps

14 % dt: the timestep

15
16 % ---

17
18 % Number of steps to save at

19 savedSteps = max(size(times, 2), size(times, 1)); % allow

for row/column vectors for time

20
21 % *** Variables to return

22 phiReturns = NaN*ones(N+1, savedSteps);

23 dPhiReturns = NaN*ones(N+1, savedSteps);

24 hReturns = NaN*ones(1, savedSteps);

25
26 t = 0;

27 currentIndex = 1;

28
29 % *** Key variables used at each timestep

30 p = ones(N+1, 1); % polymer fraction, evaluated at edges of

cells

4

31 pMids = ones(N, 1); % polymer fraction, evaluated at

middles of cells

32
33 dpMids = zeros(N, 1); % dPhi/dY, evaluated at middles of

cells

34 dp = zeros(N+1, 1); % dPhi/dY, evaluated at edges of cells

35 dp(end) = Ut/(1+4*M/3); % (straight away, set evaporation

flux from top)

36
37 h = 1; % scaled height of gel

38 hDot = 0; % dH/dT

39
40 % *** Construct the matrix M

41 MBase = zeros(N+1, N+1);

42 for k = 2 : N+1

43 MBase(k, 1) = 1/(2*N);

44 if(k˜=2)

45 for j = 2:(k-1)

46 MBase(k, j) = 1/N;

47 end

48 end

49 MBase(k, k) = 1/(2*N);

50 end

51
52 % *** Loop until we've reached the final timestep
53 while (currentIndex <= savedSteps)

54 holdP = p; % introduce a holding variable for polymer

fraction to allow the predictor -corrector steps

55
56 % Step forward by dt/2 and correct to improve stability

57 for timestep = [dt/2 dt]

58 % *** Diffusive bracket term

59 bktMids = (1 + (4*M/3)*pMids.ˆ(-2/3)).*dpMids;

60 baseBkt = (1+(4*M/3)*p(1)ˆ(-2/3))*dp(1);

61 endBkt = Ut*h;

62
63 % d[]/dY

64 dBkt = N*[2*(bktMids(1)-baseBkt); bktMids(2:end)-

bktMids(1:end-1); 2*(endBkt - bktMids(end))];

65
66 % prefactor is the matrix U-(2/3)DM

67 prefactor = diag(holdP.ˆ(2/3)) - (2/3)*diag(dp.*

holdP.ˆ(1/3))*MBase;

68
69 % *** Advective terms on the right-hand side

70 advect = (2/(3*hˆ2))*(1+(4*M/3)*holdP.ˆ(-2/3)).*dp

.ˆ2 + ...

71 (hDot/h)*linspace(0, 1, N+1)'.*(holdP.ˆ(2/3)-1)
.*dp - ...

72 (hDot/h)*MBase*holdP.ˆ(1/3);

5

73
74 % The right-hand side

75 rhs = holdP.*dBkt/hˆ2 + 2*holdP.ˆ(4/3)*Us - advect;

76
77 % Calculate d(Phi)/dT using mldivide

78 dpdt = (prefactor\rhs)./holdP.ˆ(-2/3);

79
80 % *** TIMESTEP

81 holdP = p + timestep*dpdt;

82 holdP(1) = 1; % Dirichlet BC on base

83
84 % Get midpoint phis

85 pMids = (holdP(1:end-1)+holdP(2:end))/2;

86
87 % Calculate d(Phi)/dY, including applying Neumann

BC on top

88 dp = N*[2*(pMids(1)-holdP(1)); pMids(2:end)-pMids

(1:end-1); h*Ut/(N*(1+(4*M/3)*holdP(end)ˆ(-2/3))

)];

89 dpMids = (dp(1:end-1)+dp(2:end))/2;

90
91 % Calculate H and Hdot

92 hNew = N/sum(pMids.ˆ(1/3));

93 hDot = (hNew-h)/dt;

94 h = hNew;

95 end

96
97 % Catch numerical errors

98 if(isnan(holdP))

99 break;

100 end

101
102 p = holdP;

103
104 % Save the values if we're at a reporting step
105 if(t >= times(currentIndex))

106 phiReturns(:, currentIndex) = p;

107 dPhiReturns(:, currentIndex) = dp;

108 hReturns(currentIndex) = h;

109
110 % Increment next counter

111 currentIndex = currentIndex + 1;

112 end

113
114 t = t+dt;

115 end

116 end

	Experimental details
	A numerical scheme for solving equation (5.36)
	Matlab code

