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1. Effect of number of feature maps
The number of feature maps (or channels) in each CNN layer can affect the expressibility
of the CNN. To ensure that our proposed architecture has enough feature maps for flow
reconstruction purposes, we consider a model in which, for each intermediate layers other
than the input and output, the number of feature maps is increased by 50% compared to the
model proposed in the main paper. This new model is trained for the case of 𝐹𝑟 𝜏 = 0.08.
Its loss function evaluated over the test set is found to be 0.641, which is comparable to
the performance of the original model in the main paper with a test loss of 0.639. This
result indicates that the numbers of feature maps used in the original model are adequate for
expressing the mappings between the surface and subsurface flow features.

The dimensions of the bottleneck layer in the CNN model, i.e. the output of the encoder
and the input of the decoder, are particularly important for reconstructions because it roughly
determines how much information is retained by the dimensionality reduction of the encoder.
This layer can be considered as a latent representation of the surface features important for
subsurface flow reconstructions. If the dimensions of this layer are too small, the discarded
information can negatively impact the reconstruction accuracy. Large dimensions may cause
unimportant surface features to leak into the latent layer and obfuscate our analyses of the
CNN model. The increased dimensions also make the network less efficient. Therefore, the
reconstruction performance as a function of the number of channels in the bottleneck layer
is studied. As shown in figure 1, the reconstruction errors decrease as the number of feature
maps increases. However, the improvement becomes negligible when there are more than
24 layers. Therefore, the present model uses 24 layers at the bottleneck layer, which should
retain most of the important features for reconstructions.

Compared to the original input dimensions, 256×128×4, the dimensions of the bottleneck
layer, 32 × 16 × 24, are significantly smaller, which suggests that a substantial amount of
surface information is in a lower dimensional space. However, we shall note that because our
focus is not to investigate the dimensional reduction of the free-surface flows, the output of
the encoder still keeps the form of two-dimensional feature maps, instead of reduction to a
one-dimensional vector. In other words, there can be spatial correlations in the feature maps
that can further reduce the dimensionality of the bottleneck layer.

2. Effect of network depth
In this section, some variations of the network architecture are considered to investigate the
effect of the network depth on reconstructions. The configurations of the alternative models
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Figure 1: Variations of reconstruction loss 𝐽 with the number of feature maps in the bottleneck layer (encoder
output).

are presented in tables 1–3. Model A adds two more convolution layers in the encoder part
of the original CNN model proposed in the main paper; model B adds one convolution layer
near the end of the decoder in the original model; model C further adds one convolution
layer at the beginning of the decoder compared to model B. Compared to the original model,
model A adds approximately 21% more parameters in the encoder; models B and C add 4%
and 16% more parameters to the decoder, respectively. These alternative models are trained
for the case of 𝐹𝑟 𝜏 = 0.08. The loss function values are computed as a measure of their
performances. The losses of model A, B and C are 0.638, 0.646 and 0.645, respectively,
which are comparable to the original model with a loss of 0.639. Therefore, we conclude
that the original model gains little benefit from increased network depth.

3. Effect of spatial resolutions of surface input and reconstruction output
In the main paper, the input and output of the reconstructions use grids with resolutions lower
than the simulation grid. Considering that small-scale flow structures may be filtered out or
under-resolved, we consider two CNN models with increased input and output resolutions to
investigate whether lower resolutions negatively impact the reconstructions. The first CNN
model takes the surface inputs with the original simulation resolution, i.e. on a grid of
256 × 256, which is higher than the one used in the original CNN model, 256 × 128; the
reconstructions are still performed with the same grid size as in the original model, i.e.
128 × 64 × 96. The second model uses the same input grid size as the original model and
outputs the reconstruction on a high-resolution uniform grid of size 256 × 128 × 192, which
doubles the number of grid points in each direction compared to the grid used in the original
model. As shown in figure 2, the reconstruction accuracy of the original model and that of
the two models with higher resolutions are comparable, indicating that the resolution used
in the main paper is adequate for reconstruction purposes.

Next, we investigate how lowering the input resolution, which effectively removes small-
scale features from the surface inputs, affects the reconstruction results. We consider two
coarse input grids, which are twice and fourth coarser than the original input grid used in
the main paper, i.e. with grid sizes of 128× 64 and 64× 32, respectively. The reconstruction
errors are compared in figure 3. We can see that the reduced input resolution results in
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Input size Operator Kernel size Stride

Encoder
256 × 128 × 4 Convolution (3, 3) (1, 1)
256 × 128 × 4 Blur pooling (3, 3) (2, 2)
128 × 64 × 16 Residual block - -
128 × 64 × 16 Convolution (3, 3) (1, 1)
128 × 64 × 16 Convolution (3, 3) (1, 1)
128 × 64 × 16 Blur pooling (3, 3) (2, 2)
64 × 32 × 24 Residual block - -
64 × 32 × 24 Convolution (3, 3) (2, 2)
128 × 64 × 24 Convolution (3, 3) (1, 1)
32 × 16 × 24 Residual block - -

Decoder
32 × 16 × 1 × 24 Transposed convolution (4, 4, 1) (2, 2, 1)
64 × 32 × 1 × 48 Transposed convolution (3, 3, 3) (1, 1, 3)
64 × 32 × 3 × 56 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 6 × 32 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 12 × 18 Transposed convolution (4, 4, 4) (1, 2, 1)
64 × 64 × 12 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 64 × 24 × 16 Transposed convolution (4, 4, 4) (2, 1, 2)
128 × 64 × 48 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)
128 × 64 × 97 × 9 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (4, 4, 4) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (3, 3, 3) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (1, 1, 2) (1, 1, 1)

Table 1: Alternative CNN architecture A with its parameters, including the input size, kernel size and stride
of each block (if applicable). The differences from the original architecture (table 1 in the main paper)
are underlined. The input size is written as 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑐 for two-dimensional data for the encoder or
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁𝑐 for three-dimensional data for the decoder, where 𝑁𝑥 , 𝑁𝑦 and 𝑁𝑧 denote the grid
dimensions in the 𝑥-, 𝑦- and 𝑧-directions, respectively, and 𝑁𝑐 denotes the number of channels. Note that
the output of each block is the input of the next block. The output size of the last block is 128× 64× 96× 3.
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Figure 2: Normalised mean squared reconstruction errors of the CNN model in the main paper with an input
grid 256 × 128 and an output grid 128 × 64 × 96 (——), the CNN model with a dense input grid 256 × 256
and the same output grid as the original CNN model (– – –) and the CNN model with the same input grid
and a dense output grid of size 256×128×192 (— · —) for the (a) streamwise, (b) spanwise and (c) vertical
velocity fluctuations. The case with 𝐹𝑟𝜏 = 0.08 is plotted.
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Input size Operator Kernel size Stride

Encoder
256 × 128 × 4 Convolution (3, 3) (1, 1)
256 × 128 × 4 Blur pooling (3, 3) (2, 2)
128 × 64 × 16 Residual block - -
128 × 64 × 16 Convolution (3, 3) (1, 1)
128 × 64 × 16 Blur pooling (3, 3) (2, 2)
64 × 32 × 24 Residual block - -
64 × 32 × 24 Convolution (3, 3) (2, 2)
32 × 16 × 24 Residual block - -

Decoder
32 × 16 × 1 × 24 Transposed convolution (4, 4, 1) (2, 2, 1)
64 × 32 × 1 × 48 Transposed convolution (3, 3, 3) (1, 1, 3)
64 × 32 × 3 × 56 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 6 × 32 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 12 × 18 Transposed convolution (4, 4, 4) (1, 2, 1)
64 × 64 × 12 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 64 × 24 × 16 Transposed convolution (4, 4, 4) (2, 1, 2)
128 × 64 × 48 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)

128 × 64 × 97 Convolution (5, 5) (1, 1)
128 × 64 × 97 × 9 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (4, 4, 4) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (3, 3, 3) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (1, 1, 2) (1, 1, 1)

Table 2: Alternative CNN architecture B with its parameters, including the input size, kernel size and stride
of each block (if applicable). The differences from the original architecture (table 1 in the main paper)
are underlined. The input size is written as 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑐 for two-dimensional data for the encoder or
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁𝑐 for three-dimensional data for the decoder, where 𝑁𝑥 , 𝑁𝑦 and 𝑁𝑧 denote the grid
dimensions in the 𝑥-, 𝑦- and 𝑧-directions, respectively, and 𝑁𝑐 denotes the number of channels. Note that
the output of each block is the input of the next block. The output size of the last block is 128× 64× 96× 3.

a noticeable increase of error in 𝑤′ near the surface. The reconstruction errors of 𝑢′ and
𝑣′ are increased less significantly than the error of 𝑤′. This result indicates that missing
information of the small-scale free-surface motions mainly affects the reconstruction of the
vertical velocity fluctuations near the surface, which have more small-scale structures than
the other two velocity components.

In case of the available data having lower resolutions than the input resolution of the
CNN model, one may use interpolations to resample the input, which is commonly used
in image processing. To understand how the interpolated inputs affect the reconstruction,
we interpolate surface inputs on a grid of size 64 × 32 onto a grid of size 256 × 128 with
bicubic interpolations and use the interpolated inputs for reconstructions. The reconstruction
results are compared with the above CNN model that is trained with the input grid of size
64× 32. As shown in figure 4, the reconstructions using interpolated inputs are less accurate
than the reconstructions using the model whose native input resolution is 64 × 32. We note
that the interpolation algorithm, e.g. a bilinear interpolation, has a negligible effect on the
reconstruction performance. This results indicates that adding the missing small-scale surface
features with interpolations can negatively impact the reconstructions and thus should be used
with care.
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Input size Operator Kernel size Stride

Encoder
256 × 128 × 4 Convolution (3, 3) (1, 1)
256 × 128 × 4 Blur pooling (3, 3) (2, 2)
128 × 64 × 16 Residual block - -
128 × 64 × 16 Convolution (3, 3) (1, 1)
128 × 64 × 16 Blur pooling (3, 3) (2, 2)
64 × 32 × 24 Residual block - -
64 × 32 × 24 Convolution (3, 3) (2, 2)
32 × 16 × 24 Residual block - -

Decoder
32 × 16 × 1 × 24 Convolution (3, 3, 1) (1, 1, 1)
32 × 16 × 1 × 48 Transposed convolution (4, 4, 1) (2, 2, 1)
64 × 32 × 1 × 48 Transposed convolution (3, 3, 3) (1, 1, 3)
64 × 32 × 3 × 56 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 6 × 32 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 32 × 12 × 18 Transposed convolution (4, 4, 4) (1, 2, 1)
64 × 64 × 12 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)
64 × 64 × 24 × 16 Transposed convolution (4, 4, 4) (2, 1, 2)
128 × 64 × 48 × 16 Transposed convolution (4, 4, 4) (1, 1, 2)

128 × 64 × 97 Convolution (5, 5) (1, 1)
128 × 64 × 97 × 9 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (5, 5, 5) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (4, 4, 4) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (3, 3, 3) (1, 1, 1)
128 × 64 × 97 × 3 Convolution (1, 1, 2) (1, 1, 1)

Table 3: Alternative CNN architecture C with its parameters, including the input size, kernel size and stride
of each block (if applicable). The differences from the original architecture (table 1 in the main paper)
are underlined. The input size is written as 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑐 for two-dimensional data for the encoder or
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁𝑐 for three-dimensional data for the decoder, where 𝑁𝑥 , 𝑁𝑦 and 𝑁𝑧 denote the grid
dimensions in the 𝑥-, 𝑦- and 𝑧-directions, respectively, and 𝑁𝑐 denotes the number of channels. Note that
the output of each block is the input of the next block. The output size of the last block is 128× 64× 96× 3.
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Figure 3: Normalised mean squared reconstruction errors of the CNN models with different input dimensions:
the original input grid 256×128 (——), an input grid downsampled by a factor of 2, 128×64 (– – –) and an
input grid downsampled by a factor of 4, 64 × 32 (— · —). The reconstruction errors of the (a) streamwise,
(b) spanwise and (c) vertical velocity fluctuations for the case with 𝐹𝑟𝜏 = 0.08 are plotted.
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Figure 4: Normalised mean squared reconstruction errors of the reconstructions from the original input of
size 256× 128 (——) and an input interpolated from 64× 32 to 256× 128 (– – –). The reconstruction error
of a CNN model trained with an input grid of size 64 × 32 is also compared (— · —). The reconstruction
errors of the (a) streamwise, (b) spanwise and (c) vertical velocity fluctuations for the case with 𝐹𝑟𝜏 = 0.08
are plotted.
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Figure 5: Normalised mean squared reconstruction errors of the CNN models with (——) or without (– – –)
the incompressibility constraint. The reconstruction errors of the (a) streamwise, (b) spanwise and (c) vertical
velocity fluctuations for the case with 𝐹𝑟𝜏 = 0.08 are plotted.

4. Reconstructions with and without the incompressibility constraint
In this section, we compare the reconstruction performance of the CNN models with or
without the incompressibility constraint. In the main paper, to impose the incompressibility
constraint, we add a layer to calculate the curl of a vector field, which essentially let the
CNN to predict the vector potential of the velocity field. Here, we consider a model that
predicts the velocity field directly. The reconstruction errors plotted in figure 5 indicate that
the performance differences between the two methods are negligible. This indicates that
predicting the velocity field directly and predicting the vector potential of the velocity field
produce equivalent reconstructions.

5. Learning curves
Figure 6 plots the learning curves, i.e. the history of the loss function value during the
training of the neural network, for the case with 𝐹𝑟 𝜏 = 0.08. The curves are plotted against
training steps. As the training is conducted with a batch size of 8 and the training set has
12, 183 snapshots (see table 3 in the main paper), each epoch has 1523 steps. In the first
two epochs, the losses decrease rapidly. Then, the training loss continues decaying while the
validation loss plateaus after approximately three epochs and slowly increases afterwards,
which indicates that the model starts to overfit, i.e. the model memorizes the features present
in the training set but not in the validation set. Physically, this means that the model is
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Figure 6: Learning curves showing the training loss (——) and validation loss (– – –) of the case of
𝐹𝑟𝜏 = 0.08. Note that the validation loss is calculated at the end of an epoch, marked by •.

learning non-common surface–subsurface relations which apply to the time instants in the
training set but do not apply to the instants outside the training set. The training is stopped
after the overfitting occurs.
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