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1 The reduced model and critical flux in dimensional form

For completeness, we state here the final reduced model of the main paper (equations (10)–(11)
therein) in dimensional and regularized (making the water flux q unique)

bt + Ubx =w − kcq3(1−α)/(3−α) max(−bx, 0)3/(3−α)

V (h0)t =q0(t)− q
q =Qs(h0 − bm, b−x , b+

x )

where h0 is water level in the lake, bm(t) = supx>0 b(x, t) is seal height, b−x and b+
x are lake bed

and channel slopes just up- and downstream of the seal, and q is water flux in the channel. The
regularizing flux law Qs is defined by the solution of boundary layer problem in sections 2.5–2.6;
its key features are that Qs is non-negative, vanishes when h0 < bm and increases very rapidly first
argument when h0 > bm. The function c(x, t) indicates whether water is ponded or flowing at a
given location, defined in rather awkward form through c(x, 1) = 1 if b(x, t) ≥ supx′>x b(x

′t) and
c = 0 otherwise. The dimensional constant k is given by

k =
ρwf

8ρL

(
8g

fc1

)3/(3−α)

and the constants ρw, ρ g, f , L, c1 and α are defined in section 2.1 of the main paper, while U and
w are horizontal advection and vertical uplift velocities for the ice into which the channel is incised.
The corresponding steady water inflow rate to the lake at which the seal will be breached is given
by equation (31) of the main paper, again in dimensional form.

q0,crit =
αα/[3(1−α)](3− α)(3−α)/[3(1−α)]

31/(1−α)

(
8ρwL
ρwf

)3−α/(3(1−α))(
fc1

8g

)1/(1−α)]

U1/(1−α)[− inf(w)]]−α/[3(1−α)],

where (as elsewhere in this paper) we have assumed that U is constant.
Note that, in the above, we have used a self-similar relationship between cross-sectional area

and wetted perimeter of the channel in the form

P (S) = c1S
α

In section 2 below, we revisit the formulation of the reduced model above, relaxing our assumptions
on the relationship between wetted perimeter, water depth and cross-sectional area.
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2 The formulation of the reduced model

2.1 The full model restated

We begin with the dimensionless full model,

δSt + (uS)x =εu3P (S), (1a)

νFr2S(δut + uux) =− u2P (S)− Sbx − νSh(S)x, (1b)

bt + Ubx =w − u3. (1c)

For completeness, we also define an unincised ice surface elevation through usx = w, and note that
b ≤ s throughout. As in the main paper, we assume that δ � 1, ν � 1 and ε� 1. In order to deal
with ponded sections in section 2.2, we tighten the restriction on δ to be δ � h−1(ν−1), where h−1

is the inverse of the water depth function h. The appropriate leading order model is

(uS)x = 0, u2P (S) = −Sbx, bt + Ubx = w − u3. (2)

From this, we obtain the same reduced model as in the main paper

bt + Ubx + cM(−bx, q) = w (3)

where flux q = uS is independent of x, and the ponding function c is

c(x, t) =

{
0 if b(x, t) < supx′>x b(x

′, t),
1 otherwise.

(4)

as demonstrated in section 2.2.
The definition of c ensures that c(x, t)M(−bx, q) = 0 if bx > 0, and we can set M(−bx, q) = 0

if −bx < 0, and we likewise demand that M(−bx, q) = 0 if q = 0, while for −bx ≥ 0, q > 0, M is
defined implicitly through

M = u3,
u3

q
P
( q
u

)
= −bx. (5)

We will assume below that P : [0,∞) 7→ [0,∞) is a non-decreasing, (strictly) concave function,
differentiable except possibly at the origin, with P (S) > 0 if S > 0. Then M(−bx, q) is (strictly)
convex and increasing in −bx for −bx ≥ 0, and non-decreasing in q. If P lacks concavity but
hydraulic radius

f(S) = S/P (S)

is an increasing function of S with f(0) = 0, then M is at least an increasing function of −bx, and
a non-decreasing function of q. In both cases, M(0, q) = 0 for q > 0.

To demonstrate this, assume q > 0. Note first that for a non-negative, concave function P ,
P ′(S) ≤ P (S)/S follows from the mean value theorem, with P ′(S) < P (S)/S for strictly concave
P . Consequently, f(S) = S/P (S) is a non-decreasing function of S either by assumption, or
due to concavity. As a result, 1/f(S) = P (S)/S is a non-increasing function of S, and hence
1/f(q/u) = (u/q)P (q/u) is non-decreasing and non-zero for u > 0. With that in hand, differentiate
the left-hand side of (5)2,

g(u, q) =
u3

q
P
( q
u

)
,

with respect to u for u > 0:

gu =
3u2

q
P
( q
u

)
− uP ′

( q
u

)
(6)
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With P ′(q/u) ≤ P (q/u)u/q, the right-hand side is clearly positive, and bounded below by 2u/f(u/q),
which itself is bounded below away from zero except possibly near u = 0. Since 1/f(q/u) is non-
decreasing in u as well as positive, it remains bounded as u → 0 from above, and it follows that
g(u, q) = u2/f(q/u)→ 0 as u→ 0, in addition to gu > 0 for all positive u. Hence (5)2 has a unique,
positive solution for all −bx ≥ 0, with u = 0 when −bx = 0. It follows that M(0, q) = 0. We also
have

− ∂u
∂bx

=
1

gu
, (7)

where we have just demonstrated that the right-hand side is positive. Hence M−bx(−bx, q) =
−3u2∂u/∂bx ≥ 0, with M−bx(−bx, q) > 0 if −bx > 0; melt rate M increases with downward slope
−bx. Similarly,

gq = −u
3

q2
P
( q
u

)
+
u3

q2

q

u
P ′
( q
u

)
≤ 0,

Hence, since P ′(S) ≤ P (S)/S,
∂u

∂q
= −gq

gu
≥ 0

and therefore Mq ≥ 0; Mq > 0 for −bx > 0 and q > 0 if P is strictly concave or hydraulic radius
f(S) is an increasing function of S.

To prove (strict) convexity for (strictly) concave P , note that we have to show that M−bx(−bx, q)
is non-decreasing (increasing) with increasing −bx. Once more, we have

M−bx(−bx, q) =
3u2

3u2

q
P
(
q
u

)
− uP ′

(
q
u

) =
3q

3P
(
q
u

)
− q

u
P ′
(
q
u

) . (8)

where u is defined through (5), and we know that u increases with −bx. If P is (strictly) concave
and non-decreasing, P (S) − SP ′(S) is an non-decreasing (increasing) function of S, and hence
P (q/u) − q/uP ′(q/u) is a non-increasing (decreasing) function of u, while the same is true of
P (q/u) itself. Hence the denominator on the right of (8) is non-increasing (decreasing), and M−bx
is non-decreasing (increasing), proving (strict) convexity.

Note that the model (3) is solved numerically in the main paper for specific, concave power laws
P (S) = Sα, h(S) = Sβ for 0 ≤ α < 1, 0 < β ≤ 1. We also assume these constitutive relations for P
and h in the appendices of the main paper for the analysis of the boundary layers that occur in the
full model (10) at shocks and discontinuities in c of the reduced model (3). Note that a power-law
P as specified satisfies the constraints defined earlier in the present section.

We stress that the abstract analysis and numerical method of solving equation (3) in the main
paper only assumes the properties for M that we have established here for concave P above:
convexity, monotonicity in −bx and q, and vanishing M at −bx = 0. In addition, that analysis and
numerical method assume that the ponding function in (4) is correctly defined, and that there is
continuity of b at shocks and discontinuities in c..

The purpose of the remainder of the remainder of section 2 of these supplementary notes is to
justify these last two assumptions — the definition of c, and continuity of b and its implications for
shocks and discontinuities in c — for more general constitutive relations. Here, we generalize the
analysis of ponded sections and of boundary layers in the main paper to more general functions P
and h, just as we have already done in determining the properties of M above. In addition to the
constraints on P that we have already defined, we will further take h : [0,∞) 7→ [0,∞) to be an
unbounded, increasing function, differentiable except possibly at the origin, satisfying h(0) = 0. We
show that, with these general constraints on P and h, the qualitative properties of the boundary
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layers analyzed in the appendices to the main paper remain unchanged, thus justifying the treatment
of shocks and discontinuities in c in the main paper for these ore general constitutive relations.

Section 3 provides a brief analysis of instabilities that occur above a critical Froude number,
followed by a section that provides further justification for the seal breach criteria derived in the
main paper, and a section detailing the numerical method used to compute solutions in the main
paper as well as a number of additional computation solutions that supplement those shown in the
main paper.

2.2 The ponded region

As we have just described, the main challenges in taking the model (3) at face value is the appearance
of the ponding function c, the nature of shocks and expansion fans that arise in the absence of that
ponding function, and those that result from discontinuities in c. We address these issues in turn,
dealing first with ponded sections and the definition of the ponding function.

The rescaling of (1) relevant to a ponded area is

S = h−1
(
ν−1
)
Ŝ, u = û/h−1

(
ν−1
)
, (9)

for general monotone functions h with inverse h−1, provided the function h is unbounded and
h−1(ν−1) therefore exists as ν → 0. With (9) the model (1) becomes

δh−1(ν−1)Ŝt +
(
Ŝû
)
x

=
εP (h−1(ν−1))

[h−1(ν−1)]3
û3 (10a)

Fr2

h−1(ν−1)
Ŝ

(
δût +

1

h−1(ν−1)
ûûx

)
=− P (h−1(ν−1))

[h−1(ν−1)]3
û2P̂

(
Ŝ
)
− Ŝ

[
b+ ĥ(Ŝ)

]
x

(10b)

bt + Ubx =w − 1

[h−1(ν−1)]3
û3 (10c)

where
ĥ(Ŝ) = ν−1h(h−1(ν−1)Ŝ) = ν−1h(S) P̂ (Ŝ) = P (h−1(ν−1)Ŝ)/P (h−1(ν−1)) (11)

are O(1) function of Ŝ. The above is hard to read: for ν � 1 and h a monotonically increasing,
unbounded function, h−1(ν−1) � 1 is large. We make the same assumption as in the main paper,
that hydraulic radius S/P (S) is an increasing function of S, and hence P (S) = O(S) or smaller for
large S. Consequently

P (h−1(ν−1))

[h−1(ν−1)]3
� 1. (12)

and the last term in (10b) dominates.
At this point, we also tighten our assumptions on δ and ν to δh−1(ν−1) � 1 and ν � 1. The

mass storage term δh−1(ν−1) in (10a) then does not appear at leading order, and flux q remains
constant as assumed above in (3). At leading order, (10) becomes(

ûŜ
)
x

= 0,
(
b+ ĥ

)
x

= 0, bt + Ubx = w (13)

Equation (13)3 is indeed (3) with c = 0; the only issue is making sure that c is correctly defined.
From (13)2, the surface elevation defined by ĥw = b + ĥ remains constant. Matching with the

flowing section on the far side of the dowstream seal occurs through a boundary layer in which
h ∼ O(1), ĥ = O(ν) while hu = constant at leading order as described in section 2.5, and the same
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is true at the upstream end of a ponded section (section 2.7). Consequently, ĥ → 0, Ŝ → 0 at the
ends of a ponded section at leading order in order to match to the flowing sections, while ûŜ = q
remains constant at leading order. Hence b takes the same value at both ends of the ponded section,
and (since ĥ > 0), b is below that value inside the ponded section. Since we must have bx < 0 in
any flowing section then, with q > 0, the ponded section must terminate at a local maximum of b.
The definition {x : b(x, t) < supx′>x b(x

′, t)} for the union of ponded sections follows, as does the
ponding function c in equations (3).

2.3 Boundary layers

The need to investigate boundary layers arises from three distinct situations. First, for a nonlinear
melt rate M , shocks can form spontaneously in solutions to (3); that equation itself ceases to hold
in strong form at such shocks, and an additional closure for the movement of the shock is required.
A boundary layer treatment of the full model in principle provides that closure (although as shown
in the main paper, the same result as we obtain in section 2.4 is arrived at if we simply assume that
the solution remains continuous across the shock.

Second, a shock also forms where a ponded section exists upstream of a flowing section, which we
investigate in section 2.5, only to find that again the shock moves in the way required by continuity
of b across the shock. In section 2.6, we investigate how the water level difference between ponded
section and seal height can be computed, demonstrating that this water level difference indeed
remains a higher order correction.

Third, the transition from flowing to ponded corresponds either to a simple jump in slope bx,
or to an expansion fan as already discussed in the main paper. We generalize the results presented
there to generic functions P and h in section 2.7.

These shocks were already analyzed in the main paper, where we restricted ourselves to P (S) =
Sα, h(S) = Sβ. Here, we generalize those assumptions to show that the same results hold if we
assume that P (S) is a non-decreasing, concave function with P (0) = 0, and h(S) is an unbounded,
monotonically increasing function, with P and h continuously differentiable except possibly at
S = 0. We also provide additional detail on the conclusion in the appendices of the main paper
that channel base elevation b and water surface elevation b + h(S) are continuous across shocks at
leading order.

2.4 The shock boundary layer

A shock forms where the bed slope steepens discontinuously in (3). In the full scaled model (1),
that steepening is not discontinuous but occurs over a short length scale ∼ ν. Assuming that the
shock is at a moving location x = xc(t), the appropriate rescaling is

X =
x− xc(t)

ν
, T = t, B =

b(x, t)− b0 (xc(t)
−, t)

ν
, Σ = S, V = u, (14)

where b0 is the outer solution satisfying (3), and the superscript ‘−’ denotes the limit taken as
xc is approached from below. We will likewise use the superscript ‘+’ for the limit taken from
above. Under this rescaling, we obtain the following leading-order problem for Σ(X,T ), V (X,T )
and B(X,T ):

(V Σ)X =0 (15a)

Fr2ΣV VX =− V 2P (Σ)− ΣBX − Σh(Σ)X , (15b)

b−0,t + b−0xẋc + (U − ẋc)BX =w(xc)− V 3, (15c)
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a) b) c)

Figure 1: VX in the boundary layer as defined by equation (17) for a shock in a flowing sectiom
(panel a), equation (22b) for a shock at the downstream end of a ponded section (panel b) and
equation (17) for the upstream end of a ponded section (panel c). h(S) = P (S) = S1/2, Fr = 0.575
and q = 1 in each case, with b−x = −.2, b+

x = −1 (panel a), b−x = 1, b+
x = −1 (panel b) and b−x = −1,

b+
x = αb−x /3 (panel c), the latter being the critical upstream slope generated by an expansion fan,

at which the weak inequality (45) becomes an equality. For smaller slopes b−x , the repeated root of
VX at V−∞ splits into two distinct roots, the smaller of which is the flow velocity V−∞ upstream of
the pond entry point. V−∞ and V∞ are defined in the text, Vc is the Froude critical velocity defined
by Fr2V 3/[qh′(q/V )] = 1.

where the dot denotes differentiation with respect to time t. Matching with the upstream far field,
we obtain using (2)3 that V Σ = q and b−0t = w(xc) − Ub−0x − V 3

−∞, where V−∞ = limX→−∞ V =
u(xc(t)

−, t).
Eliminating Σ and substituting for b−0t

Fr2qVX =− V 2P
( q
V

)
− q

V
BX −

q

V
h
( q
V

)
X

(16a)

(U − ẋc)BX =− (U − ẋc)b−0x − V 3 + V 3
−∞ (16b)

Here we consider a shock connecting two flowing sections satisfying (2), so c = 1 on both sides
of the shock in (3). Hence V−∞ satisfies the far field equation (2)2, V 2

−∞P (qV −1
−∞) = −qV −1

−∞b
−
0x.

Consequently, then writing b−x0 in terms of V−∞, (16b) becomes

(U − ẋc)BX =
(U − ẋc)V 3

−∞

q
P

(
q

V−∞

)
− V 3 + V 3

−∞ (16c)

Eliminating BX and rearranging, we find

VX =

[
1− Fr2 V 3

qh′
(
q
V

)]−1
V 2

qh′
(
q
V

) [V 3

q
P
( q
V

)
−
V 3
−∞

q
P

(
q

V∞

)
−
V 3 − V 3

−∞

U − ẋc

]
, (17)

where the prime on h′ denotes an ordinary derivative. The solution to (17) needs to connect the
upstream far-field V−∞ to a downstream far-field V → V∞ as X → ∞, where V 2

∞P (qV −1
∞ ) =

−qV −1
∞ b+

0x (figure 1a). Since we assume a shock connecting two flowing sections, we have V∞ > 0.
Subcriticality implies that V remains small enough to ensure that

Fr2 V 3

qh′
(
q
V

) < 1. (18)

6



We assume that V 3/h′(q/V ) is monotone in V , and vanishes as V → 0; the latter implies that
h′(Σ)� Σ−3 for large Σ, which turns out to be necessary if h is an unbounded function as assumed
in section 2.2. With these assumptions in place, subcriticality corresponds to V being less than
some threshold, as in the standard St Venant equations.

We assume that P is strictly concave as well as satisfying the other constraints in section 2.1,
so the melt rate M(−bx, q) in the outer model is strictly convex; as shown in the main paper, a
treatment of the shock assuming continuity of the outer solution b0 across the shock then ensures
that characteristics indeed enter it from both sides. If P is indeed strictly concave, it can be shown
that the V -derivative of the second square bracket in (17) changes sign at most once, from positive
to negative, and therefore has at most two roots. These roots, along with V = 0, are the fixed
points of (17). Specifically, that derivative is

V 2

q

[
3P
( q
V

)
− q

V
P ′
( q
V

)
− 3

U − ẋc

]
(19)

As in the analysis of (8), strict concavity implies that P (q/V )−q/V P (q/V ) is a decreasing function
of V , while P (q/V ) also decreases with V ; hence the the square bracket in (19) is a decreasing
function of V and the desired result follows.

Matching the downstream far-field V → V∞ requires V∞ to be the larger, stable of the two roots,
with V−∞ the smaller, unstable root. In order for V∞ to be an equilibrium of V , we require

V 3−α
∞ − V 3−α

−∞

q1−α −
V 3
∞ − V 3

−∞

U − ẋc
= 0,

to hold, or alternatively, using the relationship between V±∞ and b±0x, and the definition of M ,

ẋc = U −
q(V 3

∞ − V 3
−∞)

V 3
∞P

(
q
V∞

)
− V 3

−∞P
(

q
V−∞

) = U +
M(−b+

0x, q)−M(−b−0x, q)
b+

0x − b−0x
(20)

as derived in the main paper for a shock at which b is continuous. In order for V∞ to be the larger
root, we also require that b+

0x < b−0x.
Lastly, we can confirm that b is indeed continuous at leading order across the boundary layer, and

in fact, we can choose the location xc to make the outer solution b0 continuous. In fact, the boundary
layer problem is invariant under a shift in X, and we can make the solution unique as a function of X
by demanding that the outer bed elevation is strictly continuous with b−0 = b+

0 . From the definition
of B, we have b(x, t) = b−0 + νB(X). In the upstream matching region, where x → 0−, X → −∞,
we require b−0 + νB(X) ∼ b−0 + b−0x(x − xc) = b−0 + νb−0xX, or B(X) − b−0 X → 0. Downstream, as
x→ 0+, X →∞, matching of bed elevation requires b−0 + νB(X) ∼ b+

0 + b+
0x(x− xc) = b+

0 + νb+
0xX.

Hence b+
0 − b−0 = ν limX→∞

(
B(X)− b+

0xX
)
, which we can write as

b+
0 − b−0 = ν

(∫ ∞
0

BX(X)− b+
0xdX +

∫ 0

−∞
BX(X)− b−0xdX

)
. (21)

The integral is finite when the second square bracket in (17) has two distinct roots, with BX supplied
by (16c) approaching the far field values b±0x exponentially in X. Hence the jump in b0 is of O(ν),
which we can interpret as a matter of precisely locating the shock xc: by a shift of the origin X, we
can ensure that the sum of integrals above is in fact zero.
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2.5 The seal downstream of a ponded section

As in the main paper, the generalization to a solution that connects a ponded section upstream
to a flowing section downstream is straightforward. Again, the relation V 2

−∞P (qV −1
−∞) = −qV −1

−∞b
−
0x

ceases to hold, and we obtain instead

BX =b−0x −
V 3

U − ẋc
(22a)

VX =

[
1− Fr2 V 3

qh′
(
q
V

)]−1
V 2

qh′
(
q
V

) [V 3

q
P
( q
V

)
+ b−0x −

V 3

U − ẋc

]
. (22b)

The solution must connect V = 0 upstream to a finite V∞ > 0 downstream, satisfying V 2
∞P (qV −1

∞ ) =
−qV −1

∞ b+
0x (figure 1b). We assume as before that V∞ is subcritical, so (18) holds. Again, V∞ must

be an equlibrium of (22), so

b−0x +
V 3
∞
q
P
( q
V

)
− V 3

∞
U − ẋc

= 0, (23)

or, again using the relationship between V∞ and b+
0x and the definition of M ,

ẋc = U − V 3
∞

b−0x + q−1V 3
∞P

(
q
V∞

) = U +
M(−b+

0x, q)

b+
0x − b−0x

. (24)

This is the same as the jump condition derived in the main paper on the basis of continuity in b. We
elaborate further on continuity of b in the next subsection. We can also demonstrate that the fixed
point V∞ is stable if b−0x > 0, since if F (V ) = V 3/qP (q/V )+b−0x−V 3/(U− ẋc) and F (V∞) = 0, then
F ′(V∞) = 3(F (V∞)− b−0x)/V∞ − V∞P ′(q/V∞) = −3b−0x/V∞ − V P ′(q/V ) < 0, P being an increasing
function. By the same argument as that made following (17), it follows that V∞ is the only non-zero
fixed point of (22): the second square bracket in (22) admits at most two roots, one stable and one
unstable, and we have just shown that with b−0x > 0, there can only be a stable root. Hence there
exists a solution of (22) connecting V = 0 to V = V∞.

Note that we require b+
x0 < 0, V∞ > 0 for a solution. In addition, in order to match the upstream

conditions of V → 0 as X → −∞, we require the integral∫
qh′
(
q
V

)
V 2

dV = −
∫
h′(Σ)dΣ

to diverge as the lower limit of integration in V goes to 0, or equally the upper limit of integration
in Σ = q/V goes to infinity. This is nothing more than the requirement that h be unbounded, as
previously stipulated for the model of the ponded section in section 2.2.

2.6 Continuity of elevation and water level above the seal

As in (21), we can again show that bed elevation remains continuous at leading order in the seal
boundary layer of section 2.5, with some caveats regarding the order of the leading correction term.
The difference with the calculation in the previous section is that BX no longer has to approach b−0x
exponentially in X in the upstream matching region:

BX − b−0X =
V 3

U − ẋc
=

q3

(U − ẋc)Σ3
, (25)
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and we require that V 3 (or 1/Σ3) be integrable inX in order for the right-hand integral
∫ 0

−∞BX(X)−
b−0xdX =

∫
V 3/(U − ẋc)dX in (21) to exist. We can test this by changing to V as the variable of

integration: as X → −∞, V → 0, and XV = 1/VX ∼ qh′(q/V )/(b−0xV
2). Hence we obtain an

integral of the form ∫
V 3

U − ẋc
qh′
(
q
V

)
b−0xV

2
dV =

∫
q3

(U − ẋc)b−0x
h′(Σ)

Σ3
dΣ

where Σ = q/V . The integral exists when the lower limit in V goes to zero provided V 3h′(q/V )/V 2 =
V h′(q/V ) is integrable down to V = 0, or equivalently, if if h′(Σ)/Σ3 is integrable as Σ→∞. This
is certainly true of the power law h(S) = Sβ with 0 < β ≤ 1 used in the main paper. We revisit
the case where the integral does not converge below, which requires higher-order matching with the
ponded solution of section 2.2.

Before we develop that ponded solution to higher order, we consider how to compute water level:
the leading-order outer model of section 2.2 relies on there being no jump in water surface elevation
at the downstream end of a ponded section. In order for that to be the case, any deviation of water
level in a ponded section from the downstream seal height must be higher order correction.

For definiteness, we ensure a unique solution as at the end of section 2.4 by ensuring that b+
0 = b−0

to an error of o(ν), and choose x = xc, X = 0 to coincide with that position. Water surface elevation
in the boundary layer is at hw := b + νh(S) = b−0 + ν(B + h(Σ)), and we are ultimately interested
in computing the difference between water level in the ponded region ĥw and the ‘outer’ seal height
b−0 , since our model for the ponded region is based on ĥw − b−0 � 1.

Defining Hw = (hw − b−0 )/ν, we have

Hw,X = BX + h′(Σ)ΣX = BX −
q

V 2
h′
( q
V

)
VX (26)

water level above the seal is therefore

Hw(X,T ) = h(Σ(0, T ))−B(0, T )−
∫ 0

X

BX+h′(Σ)ΣXdX = h(Σ(0, T ))−
∫ 0

X

BX−
q

V 2
h′
( q
V

)
VXdX ′.

(27)
Here the integrand is a function of (X ′, T ), and can be computed using(22) and (24).

Key is the behaviour of the integrand as X → −∞, V → 0. Using (22), we have

Hw,X ∼ −
V 3

q
P
( q
V

)
− Fr2V 3

qh′
(
q
V

)b−0x = − q
2

Σ3
P (Σ)− Fr2q2

Σ3h′(Σ)
b−0x. (28)

Hw remains finite if the integral (27) converges as X → −∞, which corresponds to V → 0,
Σ = q/V → ∞. As above,from (22), we have XV ∼ qh′(q/V )/(b−0xV

2) at small V , or equally
XΣ ∼ −h′(Σ)/b−0x as Σ → ∞. The second term in each expression for Hw,X in (28) then leads to
an integral of the form ∫

− Fr
2V 3

qh′
(
q
V

)b−0xdX =

∫
−Fr2V dV =

∫
Fr2q2

Σ3
dΣ, (29)

which remains finite as the lower limit of integration in V goes to zero, or equally the upper limit
of integration in Σ goes to infinity. The first term meanwhile leads to an integral of the form∫

−V
3

q
P
( q
V

) q

V 2
h′
( q
V

)
dV =

∫
q2

Σ3
P (Σ)h′(Σ)dΣ. (30)
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In order for this integral remain finite as the lower limit in V goes to zero, or the upper limit in
Σ goes to infinity, requires P (Σ)h′(Σ)/Σ3 to be integrable. This stipulation is stronger than (12),
which states that P (Σ)/Σ3 � 1 for large Σ, but is satisfied for the power laws used in the main
paper: there ,P (Σ) = Σα, h(Σ) = Σβ with 0 ≤ α < 1, 0 < β ≤ 1. When P (Σ)h′(Σ)/Σ3 is
integrable as described, the leading order water level correction relative to the seal is simply given
by limx→xc ĥw = b−0 + limX→−∞Hw(X,T ).

Note that the water level correction we compute will be a function of the parameters in the
boundary layer model above, specifically of q, b−0x and b+

0x. In other words, we expect that we can
ultimately express flux q as a function of the difference between the outer water level limx→xc ĥw−b−0
as well as of the slopes b−0x and b+

0x.
When P (Σ)h′(Σ)/Σ3 is not integrable, the non-integrable term corresponds to the near-seal

behaviour of a higher order term in the outer solution. The same is true for the non-integrable
term in the computation of B at the start of this subsection if h′(Σ)/Σ3 is not integrable. In both
cases, this means that the water level and bed elevation correction term remains of higher order at
the outer scale. In order to deal with these non-integrable boundary layer solutions, we therefore
develop a higher-order solution to (10).

For simplicity, consider the distinguished limit Fr2 ∼ P (h−1(ν−1))/h−1(ν−1)). In that case, we
define

µ =
P (h−1(ν−1)

h−1(ν−1)3
.

Note that we can crudely relate the size of µ to ν based on whether P (Σ)h′(Σ)/Σ3 is integrable or not:
for large Σ, suppose that h′(Σ) ∼ h(Σ)/Σ. Noting that integrability requires that P (Σ)h′(Σ)/Σ3 �
Σ−1, this suggests that if we look at Σ ∼ h−1(ν−1), then integrability demands that

P (h−1(ν−1))ν−1

[h−1(ν−1)]4
� 1

h−1(ν−1)
,

or
µ� ν.

We expand as
Ŝ = Ŝ0 + µŜ1 + νS̃ + o(µ) + o(ν),

where the term νS̃ is a constant that is necessary in order to match the boundary layer. Similarly,
û = û0 + o(1) and b̂ = b̂0 + µb̂1 + νb̃ + o(µ). Substituting the expansion above into (10b), we find
the same leading order solution as in section 2.2. Explicitly

Ŝ0 = ĥ−1(bc − b0), û0 =
q

Ŝ0

where bc = b0(xc(t), t) is the seal height at the downstream end of the ponded section. At first
order, defining ĥ1 = h′(Ŝ0)Ŝ1

ĥ1,x =− b̂1,x −
q2

Ŝ3
0

P̂
(
Ŝ0

)
+
Fr2h−1(ν−1)

P (h−1(ν−1))

q2Ŝ0,x

Ŝ3
0

=− b̂1,x −
q2

Ŝ3
0

P̂
(
Ŝ0

)
− Fr2h−1(ν−1)

P (h−1(ν−1))

q2b0,x

ĥ′(Ŝ0)Ŝ3
0

, (31)

b1,t + Ub1,x =
1

P (h−1(ν−1))

q3

Ŝ3
0

, (32)
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and water level hw = ĥ(Ŝ) + b = hw0 + νh̃w + µhw1 to first order satisfies

hw0,x = 0, h̃w,x = 0, hw1,x = ĥ1,x + b1,x = − q
2

Ŝ3
0

P̂
(
Ŝ0

)
− Fr2h−1(ν−1)

P (h−1(ν−1))

q2b0,x

ĥ′(Ŝ0)Ŝ3
0

. (33)

At issue is the behaviour of hw,1 and b1 near the end points of a ponded section, where Ŝ0 → 0

and hence the slope of the correction terms ĥ1,x and b̂1,x diverge. Note that the limiting forms as
x → xc of the right-hand sides of (32) and of (33) correspond to rescaled versions of the limiting
behaviour as X → −∞ of BX − b−0x and Hw,X and in (25) and (28), where ĥ′ and h′ have matching

limiting forms as Ŝ → 0, Σ → ∞, ensuring that the solutions can be matched, with a bounded
composite solution (Holmes, 1995).

Specifically, note that hw1 can be solved by quadrature since Ŝ0 is known. Key to the behaviour
of hw1 is whether the right-hand side of (33)3 is integrable up to x = xc. As in the boundary layer,
we can switch to Ŝ0 as the variable of integration using ∂Ŝ0/∂x = −b0x/h

′(Ŝ0), recognizing that
Ŝ0 → 0 as x→ xc. When doing so, we obtain an integral of the form∫

q2P̂ (Ŝ0)ĥ′(Ŝ0)

b0xŜ3
0

+
Fr2h−1(ν−1)

P (h−1(ν−1))

q2

Ŝ3
0

dŜ0 (34)

These again take the same limiting form (when b0x → b−0x) as the integrands in (29)–(30), only that
our concern is now with taking the limit of integration to zero rather than infinity. Clearly, q2/Ŝ0

is not integrable down to Ŝ0, but the corresponding inner integral in (29) converges as Σ→∞.
The first term in the integrand in (34) is harder to deal with. Consider first the case where P and

h, and therefore their rescaled versions P̂ and ĥ are simple power laws or exponential functions.
Ignoring the marginal case in which the integral of q2P (Σ)h′(Σ)/Σ3 diverges Σ → ∞ and the
integral of q3P̂ (Ŝ0)h′(Ŝ0)/Ŝ3

0 diverges as Ŝ0 → 0 (which would be the case if both integrands behave
as 1/Σ, or 1/Ŝ0 for both large and small Σ and Ŝ0), then we conclude that either the integral over
Hw,X converges as X → −∞ or the integral over hw1,x converges as x→ xc.

For the former case, which as discussed includes the power laws considered in the main paper,
h̃w = Hw(−∞, T ) and hw1 is unbounded as x → xc, but a bounded composite solution can be
constructed as

hw(t) = b(xc(t), t) + νHw(ν−1(x− xc(t)), t) + µh̆w,1 + o(ν) + o(µ) (35)

where h̆w,1 satisfies

h̆w1,x =hw1,x +
q2P̂ (h−1(b−0x(xc(t)− x))

[h−1(b−0x(xc(t)− x))]3

+
Fr2h−1(ν−1)

P (h−1(ν−1))

q2b−0x

ĥ′(h−1(b−0x(xc(t)− x)))[h−1(b−0x(xc(t)− x))]3
(36)

For the latter case, in which P̂ (Ŝ0)/Ŝ3
0 is integrable to Ŝ0 = 0, neither Hw nor hw1 are bounded,

and a slightly more elaborate composite solution is possible, of the form

hw(t) = b(xc(t), t) + νȞw((x− xc(t))/ν, t) + µȟw,1(x, t) + o(ν) + o(µ) (37)

where

Ȟw,X =Hw,X +
q2P (h−1(−b−0xX))

h−1(−b−0xX)
, (38a)

ȟw,x =hw1,x +
Fr2h−1(ν−1)

P (h−1(ν−1))

q2b−0x

ĥ′(h−1(b−0x(xc(t)− x)))[h−1(b−0x(xc(t)− x))]3
(38b)
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By construction, Ȟw and ȟw remain bounded, since the unbounded limiting behaviour in Hw is ac-
counted for the corresponding limiting behaviour in hw and vice versa. In both cases, the composite
solution takes the form hw = b(xc(t), t) +O(ν) +O(µ), confirming the leading order solution for the
ponded region in section 2.2.

If P and h are more complicated, for instance of the form h(Σ) = c1Σβ1 + c2Σβ2 , then the
definition of ĥ and P̂ in (11) may lead to neither P (Σ)h′(Σ)/Σ3 being integrable as Σ → ∞, not
P̂ (Ŝ0)ĥ′(Ŝ0)/Ŝ3

0 being integrable as Ŝ0 → 0. However, in that case, ĥ or P̂ as defined in through
(11) will contain terms that are of higher order, and need to be accounted for by expanding ĥ and
P̂ , as well as expanding Ŝ to higher than first order in µ. This is unfeasible to illustrate here bar for
concrete cases: a bounded composite solution remains possible in the standard way, by absorbing
non-integrable terms in Hw,X in the appropriate order of expansion in hw and vice versa, as in (38).

B and b1 can be dealt with in much the same way, except that b1 is slightly more complicated
to solve for using characteristics. If h′(Σ)/Σ3 is integrable as Σ→∞ and B is therefore bounded,
while ĥ′(Ŝ0)/Ŝ03 is not integrable as Ŝ0 → 0, then b̃ = B(−∞, T ) and the appropriate composite
solution is

b(x, t) = b0(x, t)− b−0x(x− xc(t)) + νB((x− xc(t))/ν, t) + µb̆1(x, t) (39)

where b̆(x, t) satisfies

b̆1,t + Ub̆1,x =
1

P (h−1(ν−1))

[
q3

Ŝ3
0

− q3

[h−1(b0x(xc(t)− x))]3

]
(40)

whereas for the opposite case in which ĥ′(Ŝ0)/Ŝ03 is bounded as Ŝ0 → 0 while h′(Σ)/Σ3 is not
integrable as Σ→∞, the composite solution takes the form

b(x, t) = b0(x, t)− b−0x(x− xc(t)) + µb1(x, t) + B̌((x− xc(t))/ν, t) (41)

where B̌ satisfies

B̌X = BX −
q3

(U − ẋc)[h−1(−b−0xX)]3
(42)

2.7 Upstream end of a ponded section

A flowing section entering a ponded section can be treated using (17), since only matching with the
downsteam far field is at issue. If that far field is ponded, we abandon the relationship V 2

∞P (qV −1
∞ ) =

−qV −1
∞ b+

0x and simply put V∞ = 0. Assuming that P is concave as before, a solution such that
V → −V∞ as X → −∞ and V → 0 as X →∞ requires that V−∞ be unstable, which is the case if
and only if

3V 2
−∞P

(
q

V−∞

)
q

− V−∞P ′
(

q

V−∞

)
−

3V 2
−∞

U − ẋc
≥ 0. (43)

We still assume that P is concave and hence that S/P (S) is a non-decreasing function of S. By the
same argument as that following (17), it follows that if V−∞ is an unstable fixed point, then there
is a solution connection V−∞ to V = 0: (17) can have two fixed points (0 and V−∞) or three (0, V∞
and a second root V∞ of the second square brackets in (17)). The existence of the desired solution
is only in question in the latter case. However, the argument following (17) shows that if V−∞ is
stable, it is the smaller of the two roots, and the desired solution therefore exists.

With P being cancave, P ′(S) ≤ P (S)/S and the sum of the first two terms in (43) is positive.
Hence (43) is satisfied if

ẋc > U (44)
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or if

ẋc ≤ U −
3qV 2

−∞

3V 2
−∞P

(
q

V−∞

)
− qV−∞P ′

(
q

V−∞

) . (45)

The slope derivative M−p of the melt rate M is defined through (5) and (8). With V−∞ defined
through V 2

−∞P (q/V−∞) = qV −1
inftyb

−
0x, (45) becomes

ẋc < U −M−p(−b−x0, q). (46)

As in appendices B3 and C of the main paper, (44) and (46) together state that the transition point
xc must either travel at the same speed or more slowly than characteristics entering the transition
from the left (if (46) holds), or travel faster than characteristics entering the transition from the
right (if (44) holds). We also still obtain a relationship between the jump in slope and migration
rate, since

BX = b−0x +
V 3
−∞ − V 3

U − ẋc
→ b−0x +

V 3
−∞

U − ẋc
(47)

as X →∞, so b+
0x − b−0x = M(b−0x, q)/(U − ẋc). These results again mirror those in the main paper.

2.8 A smooth seal

The boundary layer description in appendix 2.5 assumes the seal to correspond to a shock with
b−0x > 0 and b+

0x < 0. This excludes the possibility of a smooth seal in the outer problem as explored
in the main paper. Here we revisit the boundary layer problem, assuming such a smooth seal. For
simplicity, we restrict ourselves to the simple consitutive relations of the main paper, P (S) = Sα

and h(S) = Sβ.
In that case an alternative rescaling takes the place of (14)

B̃ =
b(x, t)− b0(xs(t), t)

ν(6−2α)/(6−2α+β)
, Ṽ =

u

ν1/(6−2α+β)
, Σ̃ = ν1/(6−2α+β)S, X̃ =

x− xs(t)
ν(3−α)/(6−2α+β)

,

and we assume that b0x(xs(t), t) = 0. At leading order, the rescaled model becomes

(Σ̃Ṽ )X̃ = 0, −Ṽ 2Σ̃α − Σ̃B̃X̃ − βΣ̃βΣ̃X̃ = 0, b0,t(xs(t), t) = w(xs(t)). (48)

Expanding to first order, we additionally obtain

(U − ẋs)B̃X̃ = wx(xs(t))X̃ − IαṼ 3, (49)

where Iα = 1 if α = 0, Iα = 0 otherwise. The boundary layer model can be rewritten as a modified
version of (22b)

ṼX̃ =
Ṽ 1+β

βqβ

(
Ṽ 3−α

q1−α +
wx

U − ẋs
X̃ − Iα

Ṽ 3

U − ẋs

)
. (50)

We need to match Ṽ → 0 as X̃ → −∞ and V ∼ [−q1−αwxX̃/(U − ẋs − Iαq1−α)]1/(3−α) as X̃ →∞.
We can analyze the limiting behaviour of V by transforming (away from X̃ = 0) independent and
dependent variables to Ψ = |X̃|−1/(3−α)Ṽ and ζ = (3−α)/(6− 2α+ β) sgn(X̃)|X̃|(3−α)(6−2α+β), and
introducing an auxiliary variable φ = |ζ|−1/2. We can then rewrite (50) as an effectively autonomous
system

Ψζ = − sgn(ζ)φ2Ψ

6− 2α− β
+

Ψ1+β

βqβ

[
Ψ3−α

q1−α − Iα
Ψ3

U − ẋs
+

sgn(ζ)wx
U − ẋs

]
, φζ = − sgn(ζ)φ3, (51)
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where the trajectory chosen must satisfy φ = |ζ|−1/2 as stated, and the matching conditions dictate
that Ψ→ 0 as ζ → −∞, Ψ→ Ψ∞ = [−qwx/(U − ẋs − Iαq1−α)]1/(3−α) as ζ →∞. Ψ (like Ṽ ) must
be positive. The outer solution dictates that U − ẋs = wx/b

−
0xx is of the opposite sign to wx. This

ensures that a fixed point with positive Ψ exists if α > 0. For α = 0, existence of such a fixed
point is conditional: if wx < 0, we must have U − ẋs > q > 0 or wx > 0, U − ẋs < 0 < q. These
statements are the same as the corresponding constraints on smooth seals in the main paper.

With wx/(U−ẋs) < 0, we further find that (Ψ, φ) = (Ψ∞, 0) is a degenerate saddle with a unique
orbit (the centre manifold) into the fixed point, while the fixed point (Ψ, φ) = (0, 0) is a degenerate
unstable node, with all nearby orbits converging to the origin as ζ → −∞. These conditions allow a
unique solution of the original problem (50) that satisfies both matching conditions. Using the same
approach as sketched in the previous section, we can also again demonstrate that water level in the
upstream far field exceeds seal height by an amount of O(ν(6−2α)/(6−2α+β))� 1, again justifying the
derivation of the ponding function in section 2.2.

3 Supercritical flow

3.1 Hydraulic jump in a lake seal

A key restriction in our boundary layer models in section 2.3 is that the flow must remain subcritical,
with qh′(q/V ) > Fr2V 3. Consider for example the seal boundary layer of section 2.5, so (22) holds.
Now consider V crossing criticality at Vc defined implicitly through qh′(q/V ) > Fr2V 3. In order to
go through criticality at finite X, we have to prevent a the right-hand side from becoming singular,
so

b−0x +
V 3−α
c

q1−α −
V 3
c

U − ẋc
= 0

and we can compute the migration rate of the seal purely in terms of the slope b−0x of the channel
base upstream of the the seal, and through Vc, in terms of the Froude number Fr and the water
flux q:

ẋc = U − q1−αV 3
c

q1−αb−0x + V 3−α
c

. (52)

So long as we are assured that a hydraulic jump from sub- to supercritical occurs in the seal, we
appear to have a simpler model for seal evolution, in the sense that it does not require us to solve
(3) downstream. This is analogous to the supercritical case in Kingslake and others (2015).

This last result may however be misleading. As we show immediately below, supercritical flow
does not allow the downstream far field to satisfy (2), since recurring structures at the short O(ν)
length scales are bound to emerge, and the boundary layer construction no longer applies: the
matching procedure with the downstream solution does not apply when the latter is unstable. In
addition, in the absence of a viable outer model on the downstream side of the ‘shock’, (52), we
have no information on how that downstream side evolves and therefore whether the shock will
continue to represent a transition to supercritical flow (which in itself presumably depends on how
steep the downstream slope b+

x is).

3.2 Roll waves and bedforms

We sketch the instabilities leading to that structure only very briefly here, since it is closely related
to known features of the St Venant equations (Fowler, 2011, sections 4.4.4–4.5.2 and chapter 5).
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Instabilities occur at the same short O(ν) length scale as the boundary layers, and we use a local
coordinate system travelling at the ice velocity U , putting ξ = ν−1(x − Ut), τ = t and B = ν−1b.
The scaled model (1) becomes

δνSτ + [(u− δU)S]ξ = ενu3P (S)α

Fr2S[δνuτ + (u− δU)uξ] = −u2P (S)− SBξ − Sh(S)ξ

Bτ = w − u3

We drop terms of O(δ), O(ν) and O(ε) again, except for the time derivatives Sτ and uτ , which
represent singular perturbations that are in fact indicative of fast time scale dynamics.

Consider a constant uplift rate w > 0, and a steady state solution of (1) with all terms but the
O(ε) melt term retained. Denoting the steady state by overbars, we have B̄(ξ) = B̄ξξ, ū = w1/3 and
S̄/P (S̄) = −ū2/B̄ξ. Perturbing the steady state as B = B̄+B′ exp(ikξ+ στ), u = ū+ u′ exp(ikξ+
στ), S = S̄ + S ′ exp(ikξ + στ), we obtain

(δνσ + ikū)S ′ + ikS̄u′ =0

Fr2S̄(δνσ + ikū)u′ =− 2ūP (S̄)u′ − ū2P ′(S̄)S ′ − ikS̄B′ − B̄ξS
′ − ikS̄h′(S̄)S ′

σB′ =− 3ū2u′

There are three roots, and in the limit of δν � 1, we can look separately at roots σ ∼ O(1) and
O(δ−1ν−1) separately. For the latter, we have at leading order that B′ = 0 and

σ ∼ 1

δν

[
−[ikū+Fr−2ūP (S̄)/S̄]±

√
Fr−4ū2P (S̄)2/S̄2 − ikFr−2ū2[P (S̄)/S̄ − P ′(S̄)]− k2Fr−2S̄h′(S̄)

]
This is the dispersion relation for the St Venant equations studied in Fowler (2011, sections 4.4.4
and 4.5), and has roots with a positive real part when Fr2ū2/S̄h′(S̄)) > 4[1 − S̄P ′(S̄)/P (S̄)]−2,
with instability leading to roll wave formation. When that instability criterion is satisfied, we find
non-vanishing growth rate <(σ). in the limit k → 0 as discussed in Fowler (2011): a turbulent
extensional stress term added to the model may suppress growth of short wavelengths, but given
the hyperbolic nature of the roll wave problem, it is not clear a priori that a lack of suppression of
short wavelengths renders the model ill-posed.

For the O(1) root, we have

σ ∼ 3ikū3

[P (S̄/S̄ − P ′(S̄)]ū2 + ik(Fr2ū2 − S̄h′(S̄)

and we have B′ 6= 0; this solution describes bedform formation with <(σ) > 0 when the flow is
supercritical with Fr2ū2 > S̄h′(S̄) or Fr2ū3/[qh′(q/ū)] >. This is the same criterion as for supercrit-
icality in the boundary layer solutions of sections 2.3 above. As 4[1−S̄P ′(S̄)/P (S̄)]−2 > 1, bedforms
are predicted at lower velocities than roll waves. We expect to see bedform formation at lower flow
speeds than we see roll waves. We still have a short wave instabilities with <(σ) ∼ 3ū3/(Fr2ū2−βS̄β)
as k → ∞, and a stabilizing mechanism may again be needed: a more sophisticated heat transfer
model is a likely candidate, in which dissipation does not instantly cause melting, and heat can be
advected. As advection becomes dominant at short wavelengths, we may expect to suppress short
wavelength growth.

The formation of short-wavelength structure at supercritical Froude numbers shows that the
model (2) must be modified. Unlike in section 2.3, that structure is not localized. Instead of a
boundary layer approach, incorporation into a large-scale model analogous to (2) therefore requires
a multiple scales approach (Holmes, 1995), which represents a promising avenue for future research.
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4 Breaching the seal

Here we revisit the question of a critical steady water input Q to the lake at which the lake seal must
be breached eventually. In the main paper, we identified such a critical water input by determining
when a steady state solution fails to exist. Here, we argue that failure of a steady state to exist
implies that upward-migrating shocks will form and breach the seal.

4.1 Preliminaries: restatement of the problem and key results

First, the leading order model in question, which consists of (3)–(4) combined with the lake mass
balance model

bm = sup
x>0

b(x, t) (53a)

γḣ0 =Q(t)− q, (53b)

q =

{
0 if h0 < bm,

max
(
Q− γḃm, 0

)
if h0 = bm,

(53c)

where we denote the seal location by xm(t), with b(xm(t), t) = bm(t).
The argument below will make use of a results that are derived in the main paper. First, (3)

can be treated as being of Hamilton-Jacobi form

bt = −H(x, t, p, q)

if H(x, t, p, q) = Up− c(x, t)M(−p, q), and x, b and p = bx satisfy the following evolution equations
in terms of characteristic variables (σ, τ),

xτ = Hp, bτ = −H +Hpp, pτ = −Hx, tτ = 1.

Given these, we can define H̃(σ, τ) = H(x(σ, τ), τ.p(σ, τ), q(τ)) as the Hamiltonian defined as a
function of the characteristic variables. Along a characteristic then we have

H̃τ = Hxxτ +Hppτ +Hqqτ = Hqqτ , (54)

assuming that the characteristic in question does not enter into a ponded section from above: for
a characteristic entering into a ponded section cM will generally be discontinuous at the transition
from flowing to ponded: in fact, appendix C of the main paper can be used to show H̃ jumps
on entry into a pond unless the upstream end xp of the ponded section is steady in time. If a
characteristic does not enter into a ponded section from above and q is constant, then H̃ therefore
remains constant. When q does change, qτ may need to be treated as a delta distribution as
appropriate.

As upstream boundary condition on (3) we impose b(0, t) = bin(0) = constant, and hence we
must have H = 0 at x = 0. Upstream of the lake seal, c = 0 and hence Hq = 0. Any characteristic
that originates at the upstream end of the domain therefore has H̃ = 0, and the downstream
propagation of such characteristics will rapidly establish a locally steady solution unless there is an
upstream-migrating shock. Barring such a shock, a steady seal will form.

Below, we will be concerned with seals, either at the downstream end of the lake, or at the end
of a ponded section. If a seal at x = xs is ‘smooth’ with bx(xs, t)

− = 0, then

ẋs = U − wx(xs)

b−xx(xs, t)
= U −M−p(0−, q)−

wx(xs)

b+
xx(xs, t)

. (55)
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where superscripts + and − denote limits taken as xs is approached from above and below, respec-
tively, and M−p denotes the derivative of M(−p, q) with respect to its first argument.

Seal height for a smooth seal bs(t) = b(xs(t), t) evolves as

ḃs = b−t + ẋsb
−
x = w(xs), (56)

so a steady smooth seal is located where w(xs) = 0. Consider in particular the lake seal at xs = xm
and suppose that this seal is both ‘smooth’ and steady, so Ubx(x̄m) = w(x̄m) = 0. Maintaining the
smooth seal in steady state requires characteristics to the right of the seal to travel downstream,
with

xτ = U −M−p(0−, q) > 0. (57)

If instead of a smooth seal, there is a shock, the location xs and height bs of that shock (whether
at the end of the lake of a downstream ponded section) evolve as

ẋs =
H+ −H−

b+
x − b−x

= U +
M(−b+

x , q)

b+
x − b−x

, ḃs = bt + bxẋs = w(xm) +
b−xM(−b+

x , q)

b+
x − b−x

(58)

If, as we will assume, the lake is full with h0 = bm, then Q = q while the seal is in steady state.
By contrast, if a steady state seal, with b in steady state upstream of the seal, is ‘breached’ with
ẋs < 0, it is clear that

ḃm = bt + b−x ẋs = b−x ẋs ≤ 0 (59)

since bt = 0 and b−x ≥ 0 immediately upstream of the seal. Consequently, once the seal is breached,
q increases by (53). By (54), H̃ then increases for any characteristic in a flowing section, where
Hq > 0, while remaining constant for any characteristic in a ponded section, including upstream of
the seal.

Below, we will also need to consider characteristics that travel upstream from a ponded section
towards the lake seal. Unless the upstream end xp(t) of the section migrates downstream at velocities
greater than U (a circumstance we will be able to discount) such upward-propagating characteristics
emerge from an expansion fan, If the water level in the pond (itself set by the seal at the downstream
end of the pond) is denoted by b(xp(t), t) = bp, then appendix C of the main paper shows that
characteristics in the expansion fan emerge at slopes p− = b−x such that

ḃp = −H− + p−H−p = b−τ , (60)

where H− is the Hamiltonian evaluated at x = xp(t) and p = p−.

4.2 Breaching of the seal by upward-propagating characteristics

Next, we consider the conditions for breaching of a steady seal as advertised. As in the main paper,
we assume that w(x) has a single zero at x = x̄m and w(x) < 0 for x > x̄m, and that b(x) is initially
in steady-state upstream of the seal, with Ubin.x = w > 0 for x < x̄m. Our main interest is in how
the seal is breached, that is, in how a backward-migrating shock can form at the lake seal x = x̄m,
or migrate up to the seal. By (54), the value of the Hamiltonian H̃ on any given characteristic is
constant prior to seal incision, and H̃ increases immediately after seal incision (when qτ > 0) on
characteristics below the seal, while H̃ remains constant on characteristics above the seal.

Consider first α = 0, for which M(−p, q) = H(−p)pq. Here, the main paper shows that steady
states are impossible if Q > U . As described in the main paper, we require Q < U for a steady-state
solution in which q = Q, b−xx = Uwx and M−p(0

−, q) = Q. When instead Q > U , characteristics
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downstream of the seal initially propagate upstream at velocity xτ = U −M−p(−p, q) = U − Q,
while characteristics upstream of the seal travel at xτ = U . By (54), the characteristics that arrive
at the nascent shock from upstream have H̃ = 0, while those arriving from downstream have H̃ > 0
if initial conditions are such that H̃(σ, 0) > 0 downstream of the seal. The latter is certainly the case
if the initial profile bin = s is at the unincised ice surface, with Ubin,x = w along the entire domain
as in the solutions computed numerically in the main paper. In that case, H̃ = cM(−bin,x, Q) > 0
downstream of the seal. In that case, we have H+ > 0, H− = 0 and b+

x < 0 < b−x for the nascent
shock, which therefore migrates upstream by equation (58).

Consider next the more complicated case of α > 0. Here, the reduced Hamiltonian Hr(p, q) =
Up + M(−p, q) has a global minimum Hc(q) in the absence of ponding, and a steady state is
impossible if inf(w) < Hc(Q). In fact, we can then identify a part of the domain in which H =
Hr − w > 0 in the absence of ponding. We call this part of the domain the ‘barrier’ since no
characteristic on which H̃ ≤ 0 can pass through the barrier. We argue below that the presence of
this barrier ultimately causes characteristics with H̃ > 0 to travel upstream from the barrier and
form shocks that continue migrating upstream until the seal of the lake is breached.

Assume first that there is indeed no ponding below the seal. If characteristics that start between
seal and barrier do not propagate upstream and breach the seal, then eventually characteristics with
H̃ > 0 will emerge from the upstream end of the barrier and propagate upstream to a shock that is
bound to migrate upstream until it breaches the seal. This occurs at the latest when characteristics
that originate above the seal with H̃ = 0 reach the upstream end of the barrier. It is easy to see
that, if this happens, then these characteristics are bound to reverse direction, since they cannot
propagate into the barrier. With wx < 0 at the upstream end of the barrier, p decreases with
τ there, forcing p on these characteristics to pass the critical value pc(Q), causing the reversal of
direction. By continuity or through the formation of an expansion fan, characteristics must then
also emerge from the barrier itself, with H̃ > 0 by construction of the barrier. It is easy to show that
these characteristics cannot change direction between seal and barrier since w > Hc(Q) and hence,
with Hr = H+w > Hc(Q), p cannot pass through the critical slope pc(Q) at which characteristics
change direction. If these characteristics encounter a shock where they collide with characteristics
that originate upstream of the seal, the shock is bound to migrate upsteam by (58)1, eventually
reaching the seal itself.

The argument above needs modification if the barrier becomes ponded. Since we necessarily
have bt = −H < 0 in the barrier, ponding in the barrier region is a real possibility as shown in
figures 7–8 of the main paper. With w < 0 downstream of the steady lake seal at x̄m, any ponded
section with its own seal height bp downstream of x̄m is guaranteed to have ḃp < 0 by (58)2 and
(56). Suppose then that such a ponded section forms around the barrier, and denote the upstream
end of that ponded section by xp.

We can discount xp migrating downstream, since that would move the ponded section below
the barrier and the previous situation would apply once more. Suppose therefore that ẋp ≤ 0. By
appendix C of the main paper, there are then two possibilities: either characteristics enter xp from
above, or an expansion fan forms and new characteristics are generated tangentially to xp(t). The
former case cannot persist indefinitely: characteristics entering xp from above would eventually be
those originating upstream of the seal, implying a local steady state. That is however at odds
with the fact that ḃp < 0. If therefore characteristics emerge from the upstream end of the ponded
area, with ẋp ≤ 0, then (60) with ḃp < 0 and with xτ = Hp ≤ 0 (since the characteristics are
propagating upstream or stationary has H̃ > 0 on those characteristics. As with the upstream end
of the barrier, backward-propagating characteristics with H̃ are predicted to form at the upstream
end of the ponded region, and will again lead to the formation of a backward-migrating shock that
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breaches the seal.
Note that in both cases, we have argued that the shock that forms at the seal or reaches the

seal will continue to migrate backwards. In general, this only true at the instant at which the shock
passes the seal, since we know that q is non-decreasing at that point, and therefore the Hamiltonian
H̃ on characteristics reaching the shock from downstream is positive by (54). This need not be the
case indefinitely, since the flux q need not continue to increase beyond the initial seal incision: the
evolution of flux q over time us governed by q = max(Q− γḃm) where

ḃm = b−t + b−x
H+ −H−

b+
x − b−x

= b−x
H+

b+
x − b−x

for the geometry assumed here. It is apparent that ḃm may decrease with time even if the shock
continues to propagate upstream: this is true especially if the slope b−x upstream of the seal decreases
during incision. If q then decreases over time, so will H̃ on characteristics reaching the shock from
above, which may eventually lead to the shock ceasing its upward migration, as is evident in some
of the numerical solution: lake drainage can spontaneously cease without the lake having been
emptied completely. It is worth noting however that, if γ = 0, then q = Q while the lake is being
drained, and with qτ = 0, H̃ on characteristics reaching the seal-breaching shock from downstream
will remain positive, ensuring the seal continues to migrate upstream. This is consistent with the
numerical results in the main paper, where spontaneous halting of lake drainage is associated with
larger values of γ and the slope bx flattening upstream of the steady state seal location, as well as
with α > 0.

5 Numerical calculations

5.1 The case α = 0

The main paper only provided a brief description of results for the not strictly convex case α = 0, for
which shock formation and the relationship between flux q and near-seal geometry are qualitatively
different from the strictly convex case. Here we provide a more detailed overview in the form of
figure 2, where we use the unregularized version of the model, allowing for blow-up of the solution
for q as discussed in the main paper. As pointed out in the main paper, there are no oscillatory
solutions for α = 0 in figure 2

Once the seal is breached, the outcome of lake drainage depends on both Q and γ. As already
indicated above, for α = 0.5, moderate Q and larger γ favour oscillatory drainage of the lake,
with smaller Q and larger γ ultimately also leading to periodic oscillations rather than divergent
oscillations eventually leading to lake drainage. For α = 0, ; oscillatory lake drainage does not occur
in any of the computations we have performed.

For α = 0, smaller Q and larger γ by contrast favour blow-up of the solution with singular
outflow q. Oscillatory lake drainage does not occur in any of the computations we have performed.
Recall that oscillatory behaviour for α = 0.5 was associated with a decrease in slope b+

x downstream
of the seal during lake drainage (§6 of the main paper). A closer examination reveals that, for
the uplift rate w(x) and parameter values used in our calculations, the downstream slope b+

x only
decreases slightly (that is, becomes less negative) relatively later during lake drainage for the α = 0
case (figure 3, which corresponds to figure 12 of the main paper).

This occurs because the shock that breaches the initially smooth lake seal forms at the seal
location itself. As lake drainage proceeds, increases in flux q do cause characteristics to migrate at
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Figure 2: Solutions for α = 0: Time series of q(t) and xm(t) (as shown in e.g., panels c of figure
10 of the main paper) for different combinations of γ and Q. γ = 0.5 (row a), 1 (row b), 2 (row c)
4 (row d) and Q = 0.5 (column 1) 0.9 (column 2) 1.1 (column 3) 2 (column 4) and 4 (column 5).
The solutions in figure 10 are shown in panels c3 and c4 respectively. The critical water input for
seal breaching is Q = U = 1, in agreement with the results here.

Figure 3: Same as figure 12 of the main paper but showing solutions with α = 0 as in figure 2, a)
panels c4 and b) d4, overlaid on the appropriate version of figure 6(b). Note that each ‘orbit’ starts
at the origin here, since the shock forms at the smooth lake seal, with initially vanishing up- an
downstream slopes.
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Figure 4: Solutions for α = 0.5: Time series of q(t) and xm(t) for different combinations of γ and
Q0. γ = 2 (row a) and 8 (row b) and Q0 = 0.2185 (column 1), 0.4371 (column 2) 0.8634 (column
3), 1.570 (column 4) and 3.140 (column 5).

a faster rate U − q and therefore to experience less steepening as already described above. These
characteristics however originate further downstream from the smooth lake seal, and therefore start
with a steeper slope because the initial conditions dictate as much. The initially steeper slope
dominates and downstream slopes initially continue to steepen at the backward-migrating shock,
and only flatten slightly just before lake drainage is complete, see figure 3(a). That is not to say
that periodic drainage is impossible for α = 0, but only that we have not found any examples in
which it occurs for the particular uplift function w and initial conditions b = s used here.

5.2 Time-dependent water supply

The results in the main paper assume a steady water input Q to the lake. This is significant since
the time scale [t] = [x]/[U ] can be quite long compared with a single year, and hence the annual
melt cycle: for [x] = 1 km and [U ] = 100 m yr−1, [t] equates to ten annual cycles.

In figures 5, we recompute solutions for the same uplift function w(x) as in the main paper,

w(x) = U
{
b0x − 2b1λ(x− x0) exp

[
−λ (x− x0)2]}

with x0 = 1.5960, b1 = λ = 1, b0x = −0.25 and U = 1. We again use a steady-state initial condition
satisfying Ubin,x = w. We do so with an oscillating water input Q(t) = Q0(1 + cos(ωt)), restricting
ourselves to α = 1/2. We use a relatively large ω = 20π. With rapid oscillations in ω, it is natural
to expect that the evolution of b at least qualitatively replicates the dynamics for a constant Q
given by a nonlinear average over the time-dependent Q(t), since we expect little change in b over
a single water supply cycle.

This is largely borne out by our numerical results (figure 5), which show near-steady water
levels for low Q0, and either complete lake drainage for larger Q0 and moderate storage capacity γ,
or oscillatory lake drainage for moderate Q0 and larger γ. Note that seal lake drainage occurs at
larger mean water input Q0 when water input is oscillatory. This can presumably be attributed to
M = (−q1−αbx)

3/(3−α) used in the main paper being concave in q: as a result, the time average of
M for a fixed slope −bx is smaller for variable q than for fixed q with the same average by Jensen’s
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Figure 5: Solutions for α = 0.5: γ = 2, Q0 = 1.570 (column 1) and γ = 8, Q0 = 3.140 (column
2). Same plotting scheme a figure 7 of the main paper. The inset in panel a1 shows details of the
shock at the seal settling into a near-steady position.

inequality. A larger mean flux q is required to produce the same amount of incision if the flux varies
in time.

Panel a3 of figure 4 is notable because it does not reproduce any of the cases in figure 10 of
the main paper we observe partial seal incision and lake drainage, but with the seal eventually
settling into a near-steady state, performing small-amplitude oscillations about some mean at the
forcing frequency ω. This case is illustrated in more detail in column 1 of figure 5. Here a shock
forms downstream of the initial, smooth seal and then migrates backwards as in the solutions with
constant Q. After a short distance, it ceases to incise into the seal much further: as water input
into the lake drops off during the cycle, flux q is reduced, allowing uplift to become dominant near
the seal and potentially even seal the lake entirely again if uplift is fast enough for seal height to
rise faster than water levels in the lake. Over multiple cycles, this can lead to the downstream side
of the seal continuing to steepen while the seal itself does not migrate backwards. Note that this
occurs even though the mean water input into the lake Q0 is big enough to cause complete drainage
of the lake with steady flow (ω = 0), compare panel a3 of figure 4 here and panel c4 of figure 10 in
the main paper.
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Figure 6: Solutions for α = 0.5: Time series of q(t) and xm(t) for different combinations of γ and
Q0. γ = 1 (row a), 2 (row b) and 4 (row c), as well as Q = 0.2031 (column 1), 0.3655 (column
2) 0.4467 (column 3), 0.8122 (column 4) and 1.6245 (column 5). Note that there is very rapid full
lake draiange in panels b3 and c3 at the end of the interval shown. The critical value Qc for seal
incision for the uplift function used here is 0.4062.

5.3 Non-smooth lake bottom

In the main paper, we employed a single uplift function w(x), creating a smooth Gaussian bump in
the unincised ice surface s given by Usx = w, superimposed on a gentler, constant downward slope.
The resulting lake has an identifiable bottom at x = 0 where sx = 0, and this has consequences
for the termination of lake drainage (section 4.3 of the main paper) as the upstream slope b−x of a
shock that incises the lake seal eventually decreases as the low point of the lake is approached.

In this section, we consider an alternative uplift function that generates a lake seal upstream of
which the ice surface approaches a constant upward slope:

w(x) = −U x− x0√
1 + (x− x0)2

, (61)

giving rise to a hyperbolic unincised ice surface (dashed line figure 7, panels a1 and a2)

s(x) = −
√

1 + (x− x0)2.

In the computations reported here, we put x0 = 2.5. An ice surface profile of this type cannot
describe a lake on an ice sheet, since we expect the ice surface to continue smoothly upstream of
the lake on an ice sheet; instead, the type of lake described by the uplift function in (61) could
occur at the confluence of two valley glaciers, or a similar marginal setting.

Again we use constant Q and γ in each computation. The key observation in our results is that
oscillatory solutions become much less common, and (near) periodic ones even more so. Figure 6 is
the equivalent of figures 10–11 of the main paper, while figure 7 is the equivalent of figure 8 of the
main paper.

The only oscillatory behaviour we see is in panels a3 and b4 of figure 6, with only the former
appearing to be periodic (close inspection reveals that the oscillation is not perfectly periodic, but
of slowly growing amplitude). All other cases either maintain a smooth seal (for the cases where
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Figure 7: Solutions for α = 0.5: γ = 1, Q = 0.4467 (column 1) and γ = 2, Q = 0.8122 (column 2),
same basic plotting scheme as figure 7 of the main paper. Contour intervals in panels b1 and b2
are 0.5.
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Figure 8: The equivalent of figure 12 of the main paper for the solutions in figure 6 here: ‘orbits’
of (b+

x , b
−
x ) at the shock that breaches the seal, superimposed on contour lines of q as a function of

b−x and b+
x . The dashed red line corresponds to the slope b−x at the upstream end of the domain.

If an orbit reaches this line, lake drainage is complete. Shown are the solutions in (a) figure 6a3,
or column 1 of figure 7 (b) figure 6b4, or column 2 of figure 7, and (c) figure 6b5, corresponding
to non-oscillatory, complete lake drainage. Note that unlike figure 13 of the main paper, complete
lake drainage does not correspond to the upstream slope b−x vanishing, but to b−x = 0.9285. Note
that in the case of repeated oscillations, the downstream slope b+

x only decreases marginally in the
later stages of each drainage cycle (panel a here), in marked contrast to panel a of figure 13 of the
main paper.

Q < Qc = 0.4062) or lead to complete lake draiange (with the examples in panels b3 and c3 being
difficult to discern because the final drainage at the end of the plots is extremely rapid).

The two oscillatory examples are shown in more detail in figure 7. Comparing these with the
corresponding figure 8 of the main paper, it should be clear that, for the case of repeated oscillations
in column 1, the solution in figure 7 here involves the same shock (magenta curve) repeatedly incising
into the seal. while in figure 8 of the main paper, a new shock is formed in each drainage cycle,
ensuring perfect periodicity (see figure 14 of the main paper).

We can repeat the visualizations of figures 13 and 14 of the main paper for the ‘hyperbolic’ uplift
function. The most obvious difference between figure 8 here and figure 13 of the main paper are that
downstream slope b+

x decreases only slightly and upstream slope b−x inevitably does not decrease
at all before termination of drainage at the boundary of the blank zero-flux region. In addition,
complete lake drainage does not correspond to upstream slope b−x vanishing, but to b−x = 0.9285.

The equivalent of figure 12 in the main paper for the nearly periodic solution of figure 6a3 (or
column 1 of figure 7) is shown in figure 9. We see that lake termination does involve characteristics
with less steep slopes b+

x arriving at the seal late in the drainage cycle, but the reason for this
appears to be less a more rapid transit across the smooth seal location x̄m as in the main paper,
but simply the fact that these characteristics start out with less steep slopes (panel a of figure 9).
In addition, figure 9 underlines the fact that the same shock incises into the seal during repeated
drainage cycles, unlike the smooth-bottomed lake example of the main paper.
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