
 

 

Supplementary materials 

As a supplement to the main document of Freak Wave in a Two-Dimensional Directional 

Wavefield with Bottom Topography Change: Part I. Normal Incident Wave, this section aims to 

give details of the numerical model and how we decide the calculation conditions and optimistic 

output interval. 

To satisfy the zero-mean SSS process of a 2D wavefield, we need to give the optimistic 

sampling distance d𝑦  and lateral computational domain 𝐿   for better accuracy and 

computational efficiency. In Figure S1 and Figure S2, we give the kurtosis 𝜇  and skewness 

𝜇  from a single sample starting from the same condition at different resolution at BFI = 0.4, 

𝜎  = 0.3, and water depth 𝑘ℎ = 5. 𝜇  and 𝜇  in the 2D wavefield is gained from the surface 

elevation at a fixed point in time series. We consider 8 kinds of lateral resolution from (a) ~ (h): 

d𝑦 = 0.0057𝐿 , 0.017𝐿 , 0.028𝐿 , 0.057𝐿 , 0.143𝐿 , 0.28𝐿 , 0.85𝐿 , 1.43𝐿 , and output the 

longitudinal result in the same resolution with the lateral. Based on the degree of keeping main 

information, we get an approximate range of optimistic d𝑦 around 0.3𝐿 . 

In Figure S3, we give the normalized auto-correlation coefficient of the surface elevation 

𝜂 at 𝑡 = 40𝑇  in the sequence of 𝑦 on different spatial step 𝑥 = 10𝐿 , 20𝐿 , 30𝐿  with 

different 𝐿  and d𝑦. At 𝑦 = 0, the auto-correlation coefficient is 1 since it’s totally related to 

itself. As the calculation moves from 𝑥 = 10𝐿  to 30𝐿  on the propagation direction, the 

difference caused by different d𝑦 gradually accumulates in the result from 𝐿  = 10𝐿  and 

20𝐿 . In the 𝐿  = 30𝐿 , the auto-correlation curve is basically under 0.5, and the result for 

different d𝑦 is almost the same, which implies 𝐿  = 30𝐿  is long enough in the simulation. 

In Figure S4, we give the normalized cross-correlation coefficient of the surface elevation 𝜂 

in different sequences at different d𝑦 with 𝐿  = 30𝐿 . Three columns on the left are in time 

series, and we select 𝜂(𝑡) at 𝑦 = 0 as the first sequence and 𝜂(𝑡) at 𝑦 = 𝐷  as the other 

sequence at 𝑥 = 0, 20𝐿 , 30𝐿  to give their normalized cross-correlation. The first column 

from the right is in spatial series, and we select 𝜂(𝑥) at 𝑦 = 0 as the first sequence and 𝜂(𝑥) 

at 𝑦 = 𝐷  as the other sequence at 𝑡 = 40𝑇  to give their normalized cross-correlation. The 



results are basically lower than 0.25, which means the correlation between the two sequences 

is weak enough. To make the calculation efficient, we choose 𝐿 = 30𝐿  and 𝑑 = 0.5𝐿  in 

Monte Carlo simulation. 

After finishing the initial setting of the computing environment, we examine the 

convergence of the Monte Carlo simulation. We take the kurtosis 𝜇  of surface elevation 𝜂 

as the index and give the average 𝜇  of a 2D wavefield from different ensemble sizes 𝑀 . In 

Figure S5, we give the spatial evolution of 𝜇  from different ensemble size 𝑀  at a 2D flat 

bottom with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎  = 0.5. The result shows, 𝜇  is closed to be 

convergent when 𝑀 ≥ 200, and the improvement from enlarging 𝑀  is not obvious when 

𝑀 ≥ 300. In Figure S6, we give the variation of mean value and standard deviation of 𝜇  

with ensemble size 𝑀  at (𝑥, 𝑦) = (20𝐿 , 15𝐿 ) with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎  = 0.5. 

When 𝑀 ≥  200, the mean value and standard deviation both become convergent enough. 

Corresponding results in 2D are given in Figure S7. In a 2D area, a totally convergent mean 

value of 𝜇  requires a very large ensemble size 𝑀 , but we think the approximate range of the 

distribution of 𝜇   in 𝑀 ≥  300 is enough for the following discussion. Therefore, the 

ensemble size 𝑀  in Monte Carlo result and statistical analysis in the following part is 300. 

Figure S8 gives the original data of the fit curves through the tenth-order polynomial in 

Figure 8 in main document as a reference.  

 



Figure S1 𝜇  from the same sample at different resolution at BFI = 0.4, 𝜎  = 0.3, 𝑘ℎ =5 

(a) d𝑦 = 0.0057𝐿  (b) d𝑦 = 0.017𝐿  

(c) d𝑦 = 0.028𝐿  (d) d𝑦 = 0.057𝐿  

(e) d𝑦 = 0.143𝐿  (f) d𝑦 = 0.28𝐿  

(g) d𝑦 = 0.85𝐿  (h) d𝑦 = 1.43𝐿  



Figure S2 𝜇  from the same sample at different resolution at BFI = 0.4,𝜎  = 0.3, 𝑘ℎ = 5 

(a) d𝑦 = 0.0057𝐿  (b) d𝑦 = 0.017𝐿  

(c) d𝑦 = 0.028𝐿  (d) d𝑦 = 0.057𝐿  

(e) d𝑦 = 0.143𝐿  (f) d𝑦 = 0.28𝐿  

(g) d𝑦 = 0.85𝐿  (h) d𝑦 = 1.43𝐿  



 

Figure S3 Normalized auto-correlation of the surface elevation in the sequence of 𝑦 on 

different spatial step with different model setting at 𝑡 = 40𝑇  



 

Figure S4 Normalized cross-correlation between surface elevation at 𝑦 = 0 and 𝑦 = 𝐷  in 

time and spatial series at different sections with different model setting 



   

 

Figure S5 Spatial evolution of kurtosis of surface elevation from different ensemble size 𝑀  

at a 2D flat bottom with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎  = 0.5 

 

Figure S6 Variation of mean value and standard deviation of kurtosis with ensemble size 𝑀  

at (𝑥, 𝑦) = (20𝐿 , 15𝐿 ) with 𝑘ℎ = 5, initial BFI = 0.4 and 𝜎  = 0.5 

 

 



 

 

 

 

 

 

Figure S7 𝜇  of surface elevation from different ensemble size 𝑀  at a 2D flat bottom with 

𝑘ℎ = 5, initial BFI = 0.4 and 𝜎  = 0.5 
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(a) probability of 𝐻 > 8𝜂          

 

(b) probability of 𝜂 > 4𝜂   

Figure S8 Occurrence probability of the freak wave in wave height and free surface elevation 

distribution at initial BFI = 0.4 from different 𝜎  and 𝛾  

 


