## Supplementary materials

As a supplement to the main document of *Freak Wave in a Two-Dimensional Directional Wavefield with Bottom Topography Change: Part I. Normal Incident Wave*, this section aims to give details of the numerical model and how we decide the calculation conditions and optimistic output interval.

To satisfy the zero-mean SSS process of a 2D wavefield, we need to give the optimistic sampling distance dy and lateral computational domain  $L_y$  for better accuracy and computational efficiency. In **Figure S1** and **Figure S2**, we give the kurtosis  $\mu_4$  and skewness  $\mu_3$  from a single sample starting from the same condition at different resolution at BFI = 0.4,  $\sigma_{\theta} = 0.3$ , and water depth kh = 5.  $\mu_4$  and  $\mu_3$  in the 2D wavefield is gained from the surface elevation at a fixed point in time series. We consider 8 kinds of lateral resolution from (a) ~ (h):  $dy = 0.0057L_0, 0.017L_0, 0.028L_0, 0.057L_0, 0.143L_0, 0.28L_0, 0.85L_0, 1.43L_0,$  and output the longitudinal result in the same resolution with the lateral. Based on the degree of keeping main information, we get an approximate range of optimistic dy around  $0.3L_0$ .

In Figure S3, we give the normalized auto-correlation coefficient of the surface elevation  $\eta$  at  $t = 40T_0$  in the sequence of y on different spatial step  $x = 10L_0$ ,  $20L_0$ ,  $30L_0$  with different  $L_y$  and dy. At y = 0, the auto-correlation coefficient is 1 since it's totally related to itself. As the calculation moves from  $x = 10L_0$  to  $30L_0$  on the propagation direction, the difference caused by different dy gradually accumulates in the result from  $L_y = 10L_0$  and  $20L_0$ . In the  $L_y = 30L_0$ , the auto-correlation curve is basically under 0.5, and the result for different dy is almost the same, which implies  $L_y = 30L_0$  is long enough in the simulation. In Figure S4, we give the normalized cross-correlation coefficient of the surface elevation  $\eta$  in different sequences at different dy with  $L_y = 30L_0$ . Three columns on the left are in time series, and we select  $\eta(t)$  at y = 0 as the first sequence and  $\eta(t)$  at  $y = D_y$  as the other sequence at  $t = 40T_0$  to give their normalized cross-correlation. The first column from the right is in spatial series, and we select  $\eta(x)$  at y = 0 as the first sequence and  $\eta(x)$  at  $y = D_y$  as the other sequence at  $t = 40T_0$  to give their normalized cross-correlation. The

results are basically lower than 0.25, which means the correlation between the two sequences is weak enough. To make the calculation efficient, we choose  $L_y = 30L_0$  and  $d_y = 0.5L_0$  in Monte Carlo simulation.

After finishing the initial setting of the computing environment, we examine the convergence of the Monte Carlo simulation. We take the kurtosis  $\mu_4$  of surface elevation  $\eta$  as the index and give the average  $\mu_4$  of a 2D wavefield from different ensemble sizes M. In **Figure S5**, we give the spatial evolution of  $\mu_4$  from different ensemble size M at a 2D flat bottom with kh = 5, initial BFI = 0.4 and  $\sigma_{\theta} = 0.5$ . The result shows,  $\mu_4$  is closed to be convergent when  $M \ge 200$ , and the improvement from enlarging M is not obvious when  $M \ge 300$ . In **Figure S6**, we give the variation of mean value and standard deviation of  $\mu_4$  with ensemble size M at  $(x, y) = (20L_0, 15L_0)$  with kh = 5, initial BFI = 0.4 and  $\sigma_{\theta} = 0.5$ . When  $M \ge 200$ , the mean value and standard deviation both become convergent enough. Corresponding results in 2D are given in **Figure S7**. In a 2D area, a totally convergent mean value of  $\mu_4$  requires a very large ensemble size M, but we think the approximate range of the distribution of  $\mu_4$  in  $M \ge 300$  is enough for the following discussion. Therefore, the ensemble size M in Monte Carlo result and statistical analysis in the following part is 300.

Figure S8 gives the original data of the fit curves through the tenth-order polynomial in Figure 8 in main document as a reference.



Figure S1  $\mu_4$  from the same sample at different resolution at BFI = 0.4,  $\sigma_{\theta}$  = 0.3, kh =5



Figure S2  $\mu_3$  from the same sample at different resolution at BFI = 0.4,  $\sigma_{\theta} = 0.3$ , kh = 5



Figure S3 Normalized auto-correlation of the surface elevation in the sequence of y on different spatial step with different model setting at  $t = 40T_0$ 



Figure S4 Normalized cross-correlation between surface elevation at y = 0 and  $y = D_y$  in time and spatial series at different sections with different model setting



Figure S5 Spatial evolution of kurtosis of surface elevation from different ensemble size Mat a 2D flat bottom with kh = 5, initial BFI = 0.4 and  $\sigma_{\theta} = 0.5$ 



Figure S6 Variation of mean value and standard deviation of kurtosis with ensemble size Mat  $(x, y) = (20L_0, 15L_0)$  with kh = 5, initial BFI = 0.4 and  $\sigma_{\theta} = 0.5$ 



Figure S7  $\mu_4$  of surface elevation from different ensemble size M at a 2D flat bottom with kh = 5, initial BFI = 0.4 and  $\sigma_{\theta} = 0.5$ 





Figure S8 Occurrence probability of the freak wave in wave height and free surface elevation distribution at initial BFI = 0.4 from different  $\sigma_{\theta}$  and  $\gamma_s$