Movie captions for: Drop impact on viscous liquid films

- Movie1: Comparison of the experimental and DNS snapshots of the impact process on films with $h_f = 0.01 \text{ mm}$. In the experiment, R = 1 mm, V = 0.3 m/s, $\eta_d = 4.6 \text{ mPa.s}$ and $\eta_f = 96 \text{ mPa.s}$, giving $(We, Oh_d, Oh_f) = (4, 0.034, 0.67)$.
- Movie2: Comparison of the experimental and DNS snapshots of the impact process on films with $h_f = 0.35 \text{ mm}$. In the experiment, R = 1 mm, V = 0.3 m/s, $\eta_d = 4.6 \text{ mPa.s}$ and $\eta_f = 96 \text{ mPa.s}$, giving $(We, Oh_d, Oh_f) = (4, 0.034, 0.67)$.
- Movie3: Comparison of the experimental and DNS snapshots of the impact process on films with $h_f = 0.85 \text{ mm}$. In the experiment, R = 1 mm, V = 0.3 m/s, $\eta_d = 4.6 \text{ mPa.s}$ and $\eta_f = 96 \text{ mPa.s}$, giving $(We, Oh_d, Oh_f) = (4, 0.034, 0.67)$.