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1. Thin-membrane elasticity

We compute the stretching energy of the membrane using the position r(α1, α2, t). The
membrane has thickness h � L,W , the lateral dimensions. We assume the stretching
strain is constant through the thickness, accurate to leading order in h (Efrati et al.
2009).

We denote the flat prestrained configuration of the membrane central surface by α ≡
(α1, α2, 0) = r(α1, α2, 0). A small line of material connecting two material points α and
α̃ in the flat prestrained configuration is dα = α − α̃. We assume that the prestrained
state is obtained from the zero-energy state by applying a uniform prestrain e. Thus in
the zero-energy state the small line of material is dα/(1 + e), the prestrain having been
removed by dividing by (1 + e).

One of the most common measures of deformation in nonlinear elasticity is the
difference between the squared length of a material line in the deformed and zero-energy
configurations (Landau & Lifshitz 1986; Tadmor et al. 2012):

‖dr‖2 − 1

(1 + e)2
‖dα‖2 = 2εij dαidαj , εij =

1

2

(
aij −

1

(1 + e)2
δij

)
(S1.1)

where dr = r(α1, α2, 0) − r(α̃1, α̃2, 0) and εij is the (Green-Lagrange) strain tensor,
written in terms of the metric tensor

aij = ∂αir · ∂αjr =
∂rk
∂αi

∂rk
∂αj

, i, j = 1, 2. (S1.2)

and the identity tensor δij .
For an isotropic membrane with Young’s modulus E, Poisson ratio ν, and thickness h,

the elastic energy per unit midsurface area (Alben et al. 2019) is

ws =
h

2
Āmnopεmnεop , Āmnop =

E

1 + ν

(
ν

1− ν
δmnδop + δmoδnp

)
(S1.3)

where Āmnop is the elasticity tensor for an isotropic material (Landau & Lifshitz 1986).
For small-to-moderate prestrains, the focus of this work, the strain tensor in (S1.1) is
approximately

εij(α1, α2, t) = eδij +
1

2

(
∂αi

r · ∂αj
r− δij

)
, i, j = 1, 2. (S1.4)
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2. Derivation of pressure jump equation in 3D flow

In this section we derive an expression for the pressure jump [p](α1, α2, t) across the
membrane in terms of the membrane vortex sheet strength and other quantities, as a
generalization of (Mavroyiakoumou & Alben 2020, appendix A).

The Euler momentum equation given by

∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) (S2.1)

couples the fluid velocity u(x, t) and the pressure p(x, t). We calculate the fluid pressure
at a point that is adjacent to and follows a material point r(α1, α2, t) on the membrane.
The rate of change of fluid velocity at such a point is

d

dt
u(r(α1, α2, t), t) = ∂tu(x, t)|x=r(α1,α2,t) + (∂tr(α1, α2, t) · ∇)u(x, t)|x=r(α1,α2,t).

(S2.2)
We use (S2.2) to replace the first term in (S2.1) and write the pressure gradient at a
point that moves with r(α1, α2, t). To obtain the jump in fluid pressure at a material
point on the membrane, we write (S2.1) (modified by (S2.2)) separately at points in the
fluid that approach the membrane from either side:

d

dt
u(r(α1, α2, t), t)

±+

(
(u(x, t)− ∂tr) · ∇u(x, t)

∣∣∣∣
x=r(α1,α2,t)

)±

= −(∇p(x, t)|x=r(α1,α2,t))
±,

(S2.3)
using + for the side toward which the membrane normal n̂ is directed and − for the
other side.

Next, we decompose the fluid velocity into components tangential and normal to the
membrane. The normal component matches that of the membrane, νv. The tangential
component of the fluid velocity may be written in terms of its jump across the membrane,
using the vortex sheet strength components γ1, γ2 (Saffman 1992), and the average of the
tangential components of the fluid velocity on the two sides of the membrane, denoted
µ1 and µ2. The subscripts {1, 2} denote the components in the ŝ1 and ŝ2 directions,
respectively. The fluid velocity can be written

u± =
(
µ1 ±

γ2
2

)
ŝ1 +

(
µ2 ∓

γ1
2

)
ŝ2 + νvn̂. (S2.4)

We take the difference of (S2.3) on the + and − sides:

d

dt

(
u+(r(α1, α2, t), t)− u−(r(α1, α2, t), t)

)
+

(
(u+(x, t)− ∂tr) · ∇u+(x, t)

∣∣∣∣
x=r(α1,α2,t)

)

−

(
(u−(x, t)− ∂tr) · ∇u−(x, t)

∣∣∣∣
x=r(α1,α2,t)

)
= −(∇p(x, t)+ −∇p(x, t)−)|x=r(α1,α2,t).

(S2.5)

We then take the ŝ1 components of (S2.5), term by term. The ŝ1 component of the right
hand side of (S2.5) is −∂s1 [p]+− which we will ultimately integrate to obtain [p]+−. −∂s1 [p]+−
is equal to the ŝ1 components of the terms on the left hand side of (S2.5), which we now
compute. Using (S2.4), the ŝ1 component of the first term on the left-hand side of (S2.5)
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is

ŝ1 ·
d

dt
(u+(r(α1, α2, t), t)− u−(r(α1, α2, t), t)) = ŝ1 · ∂t(−γ1ŝ2 + γ2ŝ1)

= ∂tγ2 − ∂tγ1(ŝ1 · ŝ2)− γ1(ŝ1 · ∂tŝ2),
(S2.6)

where we use ŝi · ŝi = 1 and ŝi · ∂tŝi = 0 for i = 1, 2.
For ŝi ·[(u±(x, t)−∂tr)·∇u±(x, t)] where i = 1, 2, we first write u±−∂tr as Aŝ1+Bŝ2.

Then we compute the dot product between that and ∇u± and obtain A∂s1u
±+B∂s2u

±.
If we substitute u±, we get an expression of the form C ŝ1 + Dŝ2, which we can finally
dot with ŝ1 and ŝ2.

Using

∂tr = τ1ŝ1 + τ2ŝ2 + νvn̂, (S2.7)

and (S2.4), we find that the ŝ1 components of the second and third terms on the left-hand
side of (S2.5) are

ŝ1 ·
[
(u±(x, t)− ∂tr) · ∇u±(x, t)

] ∣∣∣∣
x=r(α1,α2,t)

=
(
µ1 ±

γ2
2
− τ1

) [
∂s1

(
µ1 ±

γ2
2

)
+
(
∂s1

(
µ2 ∓

γ1
2

))
ŝ1 · ŝ2

+
(
µ2 ∓

γ1
2

)
ŝ1 · ∂s1 ŝ2 + νv ŝ1 · ∂s1 n̂

]
+
(
µ2 ∓

γ1
2
− τ2

) [
∂s2

(
µ1 ±

γ2
2

)
+
(
∂s2

(
µ2 ∓

γ1
2

))
ŝ1 · ŝ2

+
(
µ2 ∓

γ1
2

)
ŝ1 · ∂s2 ŝ2 + νv ŝ1 · ∂s2 n̂ +

(
µ1 ±

γ2
2

)
ŝ1 · ∂s2 ŝ1

]
. (S2.8)

The difference of the + and − terms on the right-hand side of (S2.8) is

(ŝ1 · ŝ2)(−µ1∂s1γ1 + γ2∂s1µ2 + τ1∂s1γ1 − µ2∂s2γ1 − γ1∂s2µ2 + τ2∂s2γ1)

+ (ŝ1 · ∂s1 ŝ2)(−µ1γ1 + γ2µ2 + τ1γ1)

+ (µ1∂s1γ2 + γ2∂s1µ1 − τ1∂s1γ2 + µ2∂s2γ2 − γ1∂s2µ1 − τ2∂s2γ2)

+ (ŝ1 · ∂s2 ŝ1)(µ2γ2 − γ1µ1 − τ2γ2) + (ŝ1 · ∂s2 ŝ2)(−2µ2γ1 + τ2γ1)

+ (ŝ1 · ∂s1 n̂)γ2νv − (ŝ1 · ∂s2 n̂)γ1νv, (S2.9)

using ŝi · ∂si ŝi = 0 and n̂ · ŝi = 0 for i = 1, 2.
Combining (S2.6) and (S2.9), the ŝ1 component of (S2.5) is

∂tγ2 − ∂tγ1(ŝ1 · ŝ2)− γ1(ŝ1 · ∂tŝ2)

+ (ŝ1 · ŝ2)(−µ1∂s1γ1 + γ2∂s1µ2 + τ1∂s1γ1 − µ2∂s2γ1 − γ1∂s2µ2 + τ2∂s2γ1)

+ (ŝ1 · ∂s1 ŝ2)(−µ1γ1 + γ2µ2 + τ1γ1)

+ (µ1∂s1γ2 + γ2∂s1µ1 − τ1∂s1γ2 + µ2∂s2γ2 − γ1∂s2µ1 − τ2∂s2γ2)

+ (ŝ1 · ∂s2 ŝ1)(µ2γ2 − γ1µ1 − τ2γ2) + (ŝ1 · ∂s2 ŝ2)(−2µ2γ1 + τ2γ1)

+ (ŝ1 · ∂s1 n̂)γ2νv − (ŝ1 · ∂s2 n̂)γ1νv

= −∂s1 [p]+−. (S2.10)

We multiply (S2.10) through by ∂α1s1 which converts ∂s1 [p]+− to ∂α1 [p]+−. We integrate
with respect to α1 from the trailing edge, applying [p]+− = 0 at the trailing edge, to obtain
[p]+− at all points on the membrane.

If we directly integrate ∂α1
[p]+− numerically (e.g. using the trapezoidal rule), the results
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disagree significantly with our 2D benchmark results (Mavroyiakoumou & Alben 2020).
Using a different formulation that agrees with the 2D results in the small-amplitude
regime, we have found empirically that the following method agrees well with the 2D
results in both the small- and large-amplitude regimes. We first write ∂α1

[p]+− as a sum
of two terms:

∂α1 [p]+− = (∂α1 [p]+− + ∂α1s1∂tγ2 + ∂α1γ2) + (−∂α1s1∂tγ2 − ∂α1γ2). (S2.11)

We have added and subtracted ∂α1
s1∂tγ2 + ∂α1

γ2. Its integral with respect to α1 can be
written ∂tΓ +∂s1Γ , where Γ is the integrated vortex sheet strength (Saffman 1992). It is
conserved at points of a free vortex sheet that move at the average of the tangential flow
velocities on the two sides of the sheet, equal to 1 in this case. Hence ∂tΓ + ∂s1Γ = 0 at
the trailing edge, as does [p]+− by the unsteady Kutta condition (Saffman 1992; Katz &
Plotkin 2001).

Therefore we integrate the first term in (S2.11) (in parentheses) with respect to α1

using the trapezoidal rule, with the boundary condition that its integral is 0 at the
trailing edge. The integral of the remaining terms in (S2.11) is −∂tΓ − ∂s1Γ evaluated
at α1 minus its value at the trailing edge, which is zero as we have just discussed. To
evaluate −∂tΓ − ∂s1Γ on the (α1,α2) grid, we approximate Γ at the center point of a
membrane vortex panel by the circulation of the vortex ring at that panel. Derivatives
of Γ with respect to t and α1 are obtained by the usual finite-difference formulas and
extrapolation to the (α1,α2) grid points—i.e. the corner points of the panels.

3. Residual membrane equations in Broyden’s method

In this section we write down the discretized system of nonlinear membrane equations
that we solve using Broyden’s method. Having computed each of the quantities in the
membrane equation ((2.16) in the main manuscript) we keep iterating until f(x) drops
below a certain tolerance that we set to 10−5. Here f(x) is given by:

fj(x) = R1∂ttx
k
j −Ks

{
(D2

α1
rkj ·D1

α1
rkj )D1

α1
xkj + ε11D

2
α1
xkj (S3.1)

+ ν
(
(D2

α1α2
rkj ·D1

α2
rkj )D1

α1
xkj + ε22D

2
α1
xkj
)

+ (1− ν)
[
((D2

α1
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α1α2
rkj )/2)D1

α2
xkj + ε12D

2
α1α2

xkj
]

+ (D2
α2

rkj ·D1
α2

rkj )D1
α2
xkj + ε22D

2
α2
xkj + ν((D2

α1α2
rkj ·D1

α1
rkj )D1

α2
xkj + ε11D

2
α2
xkj )

+ (1− ν)
[
((D2

α1α2
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α2
rkj )/2)D1

α1
xkj + ε12D

2
α1α2

xkj
]}

+ [p]kj n̂
k
x,j

√
(D1

α1
rkj ·D1

α1
rkj )(D1

α2
rkj ·D1

α2
rkj )− (D1

α1
rkj ·D1

α2
rkj )2,

fj+(M−1)(N−1)(x) = R1∂tty
k
j −Ks

{
(D2

α1
rkj ·D1

α1
rkj )D1

α1
ykj + ε11D

2
α1
ykj (S3.2)

+ ν
(
(D2

α1α2
rkj ·D1

α2
rkj )D1

α1
ykj + ε22D

2
α1
ykj
)

+ (1− ν)
[
((D2

α1
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α1α2
rkj )/2)D1

α2
ykj + ε12D

2
α1α2

ykj
]

+ (D2
α2

rkj ·D1
α2

rkj )D1
α2
ykj + ε22D

2
α2
ykj + ν((D2

α1α2
rkj ·D1

α1
rkj )D1

α2
ykj + ε11D

2
α2
ykj )

+ (1− ν)
[
((D2

α1α2
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α2
rkj )/2)D1

α1
ykj + ε12D

2
α1α2

ykj
]}

+ [p]kj n̂
k
y,j

√
(D1

α1
rkj ·D1

α1
rkj )(D1

α2
rkj ·D1

α2
rkj )− (D1

α1
rkj ·D1

α2
rkj )2,
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fj+2(M−1)(N−1)(x) = R1∂ttz
k
j −Ks

{
(D2

α1
rkj ·D1

α1
rkj )D1

α1
zkj + ε11D

2
α1
zkj (S3.3)

+ ν
(
(D2

α1α2
rkj ·D1

α2
rkj )D1

α1
zkj + ε22D

2
α1
zkj
)

+ (1− ν)
[
((D2

α1
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α1α2
rkj )/2)D1

α2
zkj + ε12D

2
α1α2

zkj
]

+ (D2
α2

rkj ·D1
α2

rkj )D1
α2
zkj + ε22D

2
α2
zkj + ν((D2

α1α2
rkj ·D1

α1
rkj )D1

α2
zkj + ε11D

2
α2
zkj )

+ (1− ν)
[
((D2

α1α2
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α2
rkj )/2)D1

α1
zkj + ε12D

2
α1α2

zkj
]}

+ [p]kj n̂
k
z,j

√
(D1

α1
rkj ·D1

α1
rkj )(D1

α2
rkj ·D1

α2
rkj )− (D1

α1
rkj ·D1

α2
rkj )2,

where j = 1, . . . , (M − 1)(N − 1) and [p] is the result of integrating (S2.11). Here D1
αi
≈

∂αi
, D2

αi
≈ ∂αiαi

for i = 1, 2 and D2
α1α2

≈ ∂α1α2
are second-order accurate finite-

difference matrix approximations to first and second-order derivatives (order listed in
the superscript) on uniform grid nodes, one-sided at boundaries. ∂tt{xkj , ykj , zkj } are the
second-order accurate finite difference formulas (backward differentiation formulas) at
time step k based on the values of {xj , yj , zj} at times steps k − 3, . . . , k.

4. Classification of instabilities in the linear growth regime

Here figure S1 marks (R1, T0) pairs where the small-amplitude instability corresponds
to divergence or flutter with divergence, for each of the 12 boundary conditions and
membrane aspect ratio 1. Divergence (without flutter) is most common for group 1
(fixed–fixed), while flutter with divergence is more common for the other three groups.
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Figure S1. Classification of instability types for the 12 boundary conditions. Columns 1–4
correspond to groups 1–4 in figures 1 and 9 of the main manuscript. The colored lines separate
the regions where the membranes are stable and unstable. The purple triangles mark where
membranes become unstable through flutter and divergence and the gray dots mark where
membranes lose stability by divergence.
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