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1 Estimation of deformation

Symmetric and asymmetric deformations for both two and three drop systems
(figures 2 and 3) are estimated by (figure 1):

D =
P +Q− 2M

P +Q+ 2M
(1)

AD =
P

Q
− 1 (2)

2 Theory: Two droplet interaction

Consider two droplets of radii, R1 and R2 separated by the center to center
distance d̃, and subjected to uniform electric field Ẽo. Here˜represents dimen-
sional quantities. The droplets are aqueous and suspended in an insulating oil.
The droplet fluids can therefore be modeled as perfect conductors, such that the
electric potential inside the droplets is constant. The electric potential in the
outer region for each of the droplets, in their local spherical coordinate system,
is given by,

ϕ̃(1) =
EoR

3
1cosθ

r̃2
− Eor̃cosθ (3)

ϕ̃(2) =
EoR

3
2cosθ

r̃2
− Eor̃cosθ (4)

Where θ is the azimuthal angle, and r is the radial distrance from the local
origin of the local spherical coordinate system for each of the droplets. The
electric potential due to droplet 2 at r̃ = d̃, i.e. the center of droplet 1 can be
written as a multipole expansion as,

ϕ̃
(2∞)

(r̃=d̃)
= ϕ̃

(2)
(r̃=d) + r̃

(
∂ϕ̃(2)

∂r̃

)
r̃=d̃

+
r̃2

2

(
∂̃2ϕ̃(2)

∂r̃2

)
r̃=d̃

(5)

The electric potential due to droplet 2 at r̃ = d̃, the center of droplet 1, acts
like an applied potential for droplet 1. Thus if the generic applied potential for
droplet 1, due to droplet 2, is given by,

ϕ̃(1)∞ = −E(2)∞
o r̃cosθ − Λ(2)∞

o r̃2
3 cos2 θ − 1

2
+ ϕ̃(2)o (6)
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then comparing equations 5 and 6 at θ = 0, one can identify,E
(2)∞
o = −∂ϕ̃∞

∂r̃ =

−
(
− 2EoR

3
2

r̃3

)
r̃=d̃

=
(

2EoR
3
2

d̃3

)
and Λ

(2)∞
o = − 1

2
∂2ϕ̃∞

∂r̃2 = − 1
2

(
6EoR

3
2

r̃4

)
r̃=d̃

= −
(

3EoR
3
2

d̃4

)
,

while ϕ̃o = ϕ̃
(2)

(r̃=d̃)

The coefficients, E
(1)∞
o =

2EoR
3
1

d̃3
and Λ

(1)∞
o = − 3EoR

3
1

d̃4
. Thus the net poten-

tial field of the droplet (i) is given by

ϕ̃(i) = Ai
cosθ

r̃2
+Bi

P2(cosθ)

r̃3
− (Eo + E(k)∞

o )rcosθ − Λ(k)∞
o r2P2(cosθ) (7)

Where if i = 1, k = 2 and vice versa. Imposing vanishing tangential electric

field yields, Bi = R5
iΛ

(k)∞
o , Ai = R3

i (Eo + E
(k)∞
o ).

2.1 Total force on droplet

To check the correctness of calculations, one can get the total z directional force
acting on the droplet 1 using the Maxwell stress approach. Since the electric
field inside the droplet is absent due to the droplet being a perfect conductor,

the electric traction is given by f̃
(i)
e = 1

2ϵe

(
−∂ϕ̃(i)

∂r

)2
|r̃=d̃er, where er is the unit

radial vector. Then, the z direction total force is

F̃ (1)
z =

∫
dS̃ f̃ (i)e .ez = 2πR2

1

∫ π

o

sin θdθ

1

2
ϵe

(
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(i)

∂r

)2

|r̃=d̃ cos θ

 =
24πϵeR

3
1R

3
2E

2
o

d̃4

(8)
This agrees well with the dipolar moment approach (Mhatre and Thaokar, 2015)
as well as with the Clausius-Masotti factor approach wherein,

F̃ (1)
z = 2πϵeR

3
1CM∇(E(1)
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1(4EoΛ
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3
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2
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d̃4

(9)

Note that the CM factor (CM=
ϵ∗i −ϵ∗e
ϵ∗i +2ϵ∗e

), where the complex permittivity, ϵ∗ =

ϵ − jσ/ω, and j is the imaginary unit. For even de-ionized water droplet in
an insulating oil, the CM is nearly equal to unity in the low frequency regime
(upto kHz of frequency), and approaches unity at much lower frequencies as

the conductivity of the water droplet is increased. Note that, for θ = 0, −∂ϕ̃(1)
∞

∂r̃ =(
Eo + 2r̃Λ

(2)∞
0

)
, such that,∇E2

∞ =
∂E2

∞
∂r̃ |r̃=0 = ∂

∂r̃

(
2(Eo + 2r̃Λ

(2)∞
0 )(2Λ

(2)∞
0 )

)
=

4EoΛ
(2)∞
0 at r̃ = 0, the center of droplet 1.

2.2 Electric fields at interacting poles

Electric field at the two interaction poles for droplet 1 and droplet 2 are given
by, (

−∂ϕ̃
(1)

∂r̃

)
(θ = π) = −3Eo −

6EoR
3
2

d̃3
− 15EoR1R

3
2

d̃4
(10)
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(
−∂ϕ̃

(2)

∂r̃

)
(θ = 0) = 3Eo +

6EoR
3
1

d̃3
+

15EoR2R
3
1

d̃4
(11)

Thus the electric field at the interacting pole of the smaller droplet 2 is greater
than that for the bigger droplet 1. The cone angle though is determined by
the deformation, and it is therefore useful to investigate the deformation at the
interacting poles.

2.3 Curvature and Maxwell forces

The shape of the droplet i = 1, 2, is given by r̃is = Ri+Σl=4
l=1s̃

i
1Pl(cosθ). The cur-

vature is given by C̃i = 2/Ri+Σl=4
l=1s̃

i
l (l(l + 1)− 2)Pl(cosθ). Thus the curvature

stress, which acts normal to the sphere, is,

γ

[
2

Ri
+ 4

s̃
(i)
2

R2
i

P2(cosθ) + 10
s̃
(i)
3

R2
i

P3(cosθ) + 18
s̃
(i)
4

R2
i

P4(cosθ)

]
. (12)

This balances the electric stress f̃ ie = 1
2ϵe(Ẽ

(i)
r )2 equation (7) and the hydrody-

namic stress.

2.3.1 Centre of mass motion and unsteady droplet deformation

The center of mass motion and unsteady deformation is determined by simul-
taneously solving for the velocity field. The Gegenbauer functions are used to
describe stream functions and conditions of velocity continuity, stress balance
and kinematic boundary conditions to determine the evolution of the separa-
tion d(t) and the deformation modes sl(t). The methodology is similar to that
described in our earlier works (Thaokar, 2012). We consider for simplicity, that
the droplets do not interact hydrodynamically. Thus the hydrodynamics of each
of the droplet is considered to be that of a single droplet in electric field. The
velocity stream functions ψi,e, are expressed in terms of Gegenbauer functions
Gi(cos theta), and then velocities, hydrodynamic stresses are calculated using
the appropriate definitions.

ψe = G2

(
C2ae

r
+ C2ber

)
+G3

(
C3ae

r2
+ C3be

)
+G4

(
C4ae

r3
+
C4be

r

)
+G5

(
C5ae

r4
+
C5be

r2

)
(13)

ψi = G2

(
C2air

4 + C2bir
2
)
+G3

(
C3air

5 + C3bir
3
)
+G4

(
C4air

6 + C4bir
4
)
+G5

(
C5air

7 + C5bir
5
)

The unknown coefficients are estimated using the boundary conditions,namely
velocity continuity, normal and tangential stress balances and the kinematic con-
dition give the evolution equations for both the center of mass motion of the
droplets, and the deformation modes. The orthonganality condition for Legen-
dre polynomials is used. Axisymmetry is assumed in the calculations.
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The equation of motion leads to the following equation for the variation of
change in the inter droplet distance with time

d(t) =

(
d5o −

(60χ2(1 + χ)(1 + λ)

(2 + 3λ)
t

)1/5

. (14)

. Here, the distances are non-dimensionalised by R1, and χ = R2/R1. the time
is non-dimensionalised by µe/ϵeE

2
o . λ = µi/µe. The coefficients associated with

Legendre Polynomials, evolve as a first order equation with time constants, Tsl ,
associated with the deformation mode l with amplitude sl,

d

dt
sl(t) = −sl(t)

Tsl
+Al (15)

where Al is a constant associated with the evolution equation for the shape
modes. The time constants are listed below,

T
s
(2)
2

=
Caχ(3 + 2λ)(16 + 19λ)

40(1 + λ)
(16)

T
s
(2)
3

=
Caχ(10 + 11λ)(19 + 16λ)

280(1 + λ)
(17)

T
s
(2)
4

=
Caχ(11 + 10λ)(16 + 17λ)

360(1 + λ)
(18)

T
s
(1)
2

=
Ca(3 + 2λ)(16 + 19λ)

40(1 + λ)
(19)

T
s
(1)
3

=
Ca(10 + 11λ)(19 + 16λ)

280(1 + λ)
(20)

T
s
(1)
4

=
Ca(11 + 10λ)(16 + 17λ)

360(1 + λ)
. (21)

Here, the capillary number Ca = R1ϵeE
2
o/γ. It is convenient to express defor-

mation in terms of the symmetric and asymmetric degrees of deformation.

D =
rs(π2 )− rs(0)

rs(π2 ) + rs(0)
=

3

4
s2 +

5

16
s4 (22)

AD − 1 =
rs(0)

rs(π)
− 1 = 2s3 (23)

One can thus construct the unsteady D and AD trajectories for the two drops.

2.3.2 Quasi-Steady state deformation

The estimates of deformation can be obtained by balancing the electric stress
and the curvature stress that gives the instantaneous quasi-steady shape of the
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droplets for given positions of the droplets. Thus we get, the quasi-steady state
deformation as

D(2) =
9Caχ2

16

(
1 +

1

4d3

)
(24)

AD(2) = −27

5
Ca

χ3

d4
(25)

D(1) =
9Ca

16

(
1 +

χ3

4d3

)
(26)

AD(1) = −27

5
Ca

χ3

d4
(27)

It is seen that while the bigger droplet deforms more due to its bigger size, the
deformation due to interaction is greater for the smaller droplet (the second
term in the bracket of equations 24 and 26). Although, AD(1) = AD(2), it
should be mentioned that AD could lead to formation of asymmetric conical
tips at the interacting poles of the two droplets.

3 Theory: Three droplet interaction

Consider a three droplet system of radii, R1 = R3 which flank droplet 2 or
radius R2. The center to center distance between droplets 1 and 2 is the same
as between 2 and 3 and is equal to d, and the three droplets are subjected
to uniform electric field E0. The droplet 2 remains stationary. The droplet 1

experiences, E
(2)∞
o =

2EoR
3
2

d̃3
, Λ

(2)∞
o = − 3EoR

3
2

d̃4
, E

(3)∞
o =

2EoR
3
3

(2d̃)3
and Λ3∞

o =

− 3EoR
3
3

(2d)4 , as an effective applied field due to droplets 2 and 3.

3.1 Total force on droplet

The total z directional force acting on the droplet 1 is,

F̃ (1)
z = 2πϵR3

1∇E2
∞ = 8πϵeR

3
1Eo(Λ

(2)∞
o + Λ(3)∞

o ) =
3πϵE2

oR
6
1(1 + 16χ3)

2d̃4
(28)

3.2 Electric fields at interacting poles

Electric field at the two interaction poles for droplet 1 and droplet 2 are given
by,

−

(
∂ϕ̃(1)

∂r̃

)
(θ = π) = −3Eo −

6EoR
3
2

d̃3
− 6EoR

3
1

(2d̃)3
(29)(

−∂ϕ̃
(2)

∂r̃

)
(θ = 0) = 3Eo +

12EoR
3
1

d̃3
(30)

Thus the electric field at the interacting pole of the smaller droplet is greater
than that for the bigger droplet.

5



3.2.1 Center of mass motion and unsteady deformation

The variation of the inter droplet distance with time is given by

d(t) =

(
d5o −

30(1 + 2χ3)(1 + λ)

(2 + 3λ)
t

)1/5

(31)

The time constants associated with the deformation modes are given by,

T
s
(2)
2

=
Caχ(3 + 2λ)(16 + 19λ)

40(1 + λ)
(32)

T
s
(2)
3

=
Caχ(10 + 11λ)(19 + 16λ)

280(1 + λ)
(33)

T
s
(2)
4

=
Caχ(11 + 10λ)(16 + 17λ)

360(1 + λ)
(34)

T
s
(1)
2

=
Ca(3 + 2λ)(16 + 19λ)

40(1 + λ)
(35)

T
s
(1)
3

=
Ca(10 + 11λ)(19 + 16λ)

280(1 + λ)
(36)

T
s
(1)
4

=
Ca(11 + 10λ)(16 + 17λ)

360(1 + λ)
(37)

3.2.2 Quasi-steady state deformation

The quasi-steady state deformation are given as

D(2) =
9Caχ2

16

(
1 +

8

d3

)
AD(2) = 0

D(1) =
9Ca

16

(
1 +

1 + 8χ3

2d3

)
AD(1) = −27

80
Ca

1 + 16χ3

d4

Thus it shows that while the bigger droplet deforms more due to its bigger size,
the deformation due to interaction is greater for the smaller droplet. Interest-
ingly AD(2) = 0, since for the central droplet, flanked by two equal sized, equally
separated droplets, the deformation is symmetric. AD(2), the deformation of
the outer two droplets increases with Ca. It should be mentioned that AD could
lead to formation of asymmetric conical tip at the interacting poles of the two
droplets. In three drop system drop 1 (R1) and drop 2 (R2) are considered for
the analysis.
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3.3 Renormalisation of critical electric field for three droplet
system

The electric field experienced by the central droplet in n droplet systems is given
by

E = Eo

(
1 + 2

2R3
1

d̃3
+ 2

2R3
1

(2d̃)3
+ 2

2R3
1

(3d̃)3
+ · · ·

)
= Eo

(
1 + 2

2R3
1

d̃3

∞∑
n=1

1

n3

)
(38)

Noting that
∑∞

n=1
1
n3 = ζ(3), and zeta function ζ(3) = 1.2. Relating

4/3πR3
1

d̃3
=

ϕv, where ϕv here is the volume fraction of the dispersed phase, we get the
reduction in critical electric field due to a chain of n droplets.

3.4 Discussion of results

Figures 4 and 5 denote theoretically obtained variation of electric field at the
adjacent poles (Ep

n) and symmetric and asymmetric deformation for two droplet
system with time. It is observed that Ep

n of drop 2 (R2) at the time of contact
increases significantly faster than that of drop 1 (R2) which is qualitatively in
line with numerical simulations. Figures 5(a) and 5(b) shows the evolution of D
and AD with time. It is observed that both D and AD show higher deformation
of drop 1 initially. However the rate of increase of deformation near contact for
drop 2 is significantly higher. This is also predicted by numerical simulations
and experimental observations.

Figure 6 shows the variation of the theoretically obtained electric field at the
adjacent poles (Ep

n) for three droplet system with time. It is observed that Ep
n

of drop 2 (R2) at the time of contact increases significantly faster than that of
drop 1 (R2). Numerical simulations predict as such. Observations analogous to
two drop system are also seen in case of three drop system shown in figure 7(a).
In figure 7(b), however, comparison of only AD of drop 1 is plotted as AD of
drop 2 is always 0 on account of perfectly symmetric position and subsequent
symmetric deformation.

4 Estimation of tangential stress

The tangential electric field, and thereby electrohydrodynamic flows are neg-
ligible with our chosen conductivity ratio (σr = 0.001) as the leaky-dielectric
system modeled in this work is extended to perfectly conducting perfect dielec-
tric system. To validate this a test case is simulated with R1 = R3 = 1 and
R3 = 0.5 with Ca = 0.1.
Both normal and tangential stress distributions are also plotted (figure 8) across
all the nodes of the drops for both t = 0 and t = contact as shown in figure 8.
It shows that PC modeling used for our numerical analysis with σr and Q and
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taking limiting case is accurate and tangential stresses are only of order of 0.1
indicating numerical accuracy.

5 Velocity, pressure and Maxwell stress distri-
bution

Velocity field, electric stress (Maxwell stress) distribution and pressure profiles
have been plotted for two three-droplet systems (figure 9).
In both two and three droplet systems, uncharged, perfectly conducting drops
are placed in an uniform electric field E0 in a perfectly dielectric medium. The
droplets behave like a neutral conductor sphere and in presence of the externally
applied electric field it gets polarized such that the positive and negative charges
migrate towards the north and south poles respectively to negate the internal
field lines. The charge density on the interface is given by q̃s = ϵ0ϵeẼn. Thus
the normal electric field in our calculations is associated with corresponding free
surface charge density given by q = ϵ0ϵeEn. Maxwell stress corresponding to
normal electric field is plotted in figure 9(c).
The bridge connecting two droplets break on account of competition between
azimuthal and meridional curvatures (Roy et al., 2019). It was observed that
when the strength of electric field is greater than the critical value (Ca > Cac)
the azimuthal curvature dominates leading to increased pressure at the bridge
which causes non-coalescence. When strength of electric field is below the crit-
ical value (Ca < Cac) the meridional curvature dominates leading to decreased
pressure in the bridge which causes the droplets to coalesce. These are shown
in figures 9(a) and 9(b).
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Figure 1: Estimation of symmetric and asymmetric deformation

Figure 2: Two droplet system.
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Figure 3: Three droplet system.

a b

Figure 4: (a) Theoretically obtained variation of electric field at the adjacent
poles (Ep

n) for two-droplet system with non dimensional time (t) (b) Closer look
at variation of electric field from time t = 0.01 to t = 1.
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Figure 5: (a) Theoretically obtained variation of symmetric deformation of indi-
vidual droplets under electric field with time (t) in two droplet system (b) The-
oretically obtained variation of asymmetric deformation of individual droplets
under electric field with time (t) in two droplet system.
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a

b c

Figure 6: (a) Theoretically obtained variation of electric field at the adjacent
poles (Ep

n) for three droplet system with non dimensional time (t) (b) Closer
look at variation of electric field from time t = 0.01 to t = 1 (c) Closer look at
variation of electric field from time t = 10 to t = 40.
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Figure 7: (a) Theoretically obtained variation of symmetric deformation (D)
of individual droplets under electric field with time in three droplet system (b)
Theoretically obtained variation of asymmetric deformation (AD) of individual
droplets under electric field with time in three droplet system.
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a

b

Figure 8: Normal and tangential stress distribution for a 3 drop setup (R1 =
R2 = 1 and R3 = 0.5 with Ca = 0.1 and center to center distance between the
outer and inner drop=2) at: (a) t = 0 and (b)t = contact.
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a b

c

Figure 9: (a)Pressure profile for a system of three drops with R1 = R2 = R3 = 1
and Ca = 0.1 exhibiting coalescence, (b)Pressure profile for a system of three
drops with R1 = R3 = 1 and R2 = 0.5 and Ca = 0.1 exhibiting non-coalescence,
and (c)Velocity (in green) and Maxwell stress profile (in red) for a system of
three drops with R1 = R3 = 1 and R2 = 0.5 and Ca = 0.1 exhibiting non-
coalescence.
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