# Dimples, jets and self-similarity in nonlinear, capillary waves: supplementary material

Lohit Kayal<sup>1</sup>, Saswata Basak<sup>1</sup> and Ratul Dasgupta<sup>1</sup>†

<sup>1</sup>Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

## 1. Expressions for modal coefficients

With the shorthand notation representing the integrals

$$I_{\nu_1-m_1,\nu_1-m_2,\nu_3-m_3,\dots} \equiv \frac{1}{l_q^2} \int_0^{l_q} dr \ r \mathbf{J}_{\nu_1}(\alpha_{m_1,q}r) \mathbf{J}_{\nu_2}(\alpha_{m_2,q}r) \mathbf{J}_{\nu_3}(\alpha_{m_3,q}r) \dots$$

With  $\omega_{j,q}^2 \equiv \alpha_{j,q}^3$  and  $\alpha_{j,q} \equiv \frac{l_j}{l_q}$ , at  $O(\epsilon^2)$  we obtain

$$\phi_2(r, z, \tau) = \frac{1}{2} J_0^2(l_q) \sin(2\tau) + \sum_{j=1}^{\infty} \left[ \xi_{j,q}^{(1)} \sin(\omega_{j,q}\tau) + \xi_{j,q}^{(2)} \sin(2\tau) \right] \exp(\alpha_{j,q}z) J_0(\alpha_{j,q}r)$$
(1.1)

and 
$$\eta_2(r,\tau) = \frac{1}{2} \sum_{j=1}^{\infty} \left[ \zeta_{j,q}^{(1)} \cos(\omega_{j,q}\tau) + \zeta_{j,q}^{(2)} \cos(2\tau) + \zeta_{j,q}^{(3)} \right] \mathbf{J}_0(\alpha_{j,q}r)$$
(1.2)

where the expressions for the coefficients are

$$\begin{aligned} \xi_{j,q}^{(1)} &\equiv \frac{2}{J_0^2(l_j)(\omega_{j,q}^2 - 4)\omega_{j,q}} \left[ (\alpha_{j,q}^3 - \alpha_{j,q}^2 - 1)I_{0-q,0-q,0-j} + (\alpha_{j,q}^2 + 1)I_{1-q,1-q,0-j} \right] \\ \xi_{j,q}^{(2)} &\equiv \frac{1}{J_0^2(l_j)(\omega_{j,q}^2 - 4)} \left[ (\alpha_{j,q}^2 - 3)I_{0-q,0-q,0-j} - (\alpha_{j,q}^2 + 1)I_{1-q,1-q,0-j} \right] \end{aligned}$$
(1.3)

and

$$\begin{aligned} \zeta_{j,q}^{(1)} &\equiv -\frac{4}{\alpha_{j,q}^2 J_0^2(l_j)(\omega_{j,q}^2 - 4)} \left[ (\alpha_{j,q}^3 - \alpha_{j,q}^2 - 1) I_{0-q,0-q,0-j} + (\alpha_{j,q}^2 + 1) I_{1-q,1-q,0-j} \right] \\ \zeta_{j,q}^{(2)} &\equiv \frac{1}{\alpha_{j,q}^2 J_0^2(l_j)(\omega_{j,q}^2 - 4)} \left[ (3\alpha_{j,q}^3 - 4\alpha_{j,q}^2) I_{0-q,0-q,0-j} + (\alpha_{j,q}^3 + 4\alpha_{j,q}^2) I_{1-q,1-q,0-j} \right] \\ \zeta_{j,q}^{(3)} &\equiv \frac{1}{\alpha_{j,q}^2 J_0^2(l_j)} \left[ I_{0-q,0-q,0-j} - I_{1-q,1-q,0-j} \right] \end{aligned}$$
(1.4)

## † Email address for correspondence: dasgupta.ratul@iitb.ac.in

At  $O(\epsilon^3)$  we have with the expression for  $\eta_3(r, \tau)$  viz.

$$\begin{aligned} \eta_{3}(r,\tau) &= \left[ \mu^{(q)} \cos(\tau) + \kappa^{(q)} \cos(3\tau) + \sum_{m=1,m\neq q}^{\infty} \left( \gamma_{m}^{(q)} \cos\left[ \left( \omega_{m,q} + 1 \right) \tau \right] + \chi_{m}^{(q)} \cos\left[ \left( \omega_{m,q} - 1 \right) \tau \right] \right) \right] \mathbf{J}_{0}(r) \\ &+ \sum_{j=1,j\neq q}^{\infty} \left[ \mu^{(j)} \cos(\tau) + \kappa^{(j)} \cos(3\tau) + \nu^{(j)} \cos\left( \omega_{j,q} \tau \right) + \sum_{m=1,m\neq q}^{\infty} \left( \gamma_{m}^{(j)} \cos\left[ \left( \omega_{m,q} + 1 \right) \tau \right] + \chi_{m}^{(j)} \cos\left[ \left( \omega_{m,q} - 1 \right) \tau \right] \right) \right] \mathbf{J}_{0}\left( \alpha_{j,q} r \right) \end{aligned}$$

where

$$\begin{split} \mu^{(j)} &\equiv \frac{1}{\alpha_{j,q}^{2}} \left( \mathcal{R}^{(j)} - \frac{\mathcal{T}^{(j)}}{(\omega_{j,q}^{2} - 1)} \right) \\ \kappa^{(j)} &\equiv \frac{1}{\alpha_{j,q}^{2}} \left( \mathcal{B}^{(j)} - \frac{3\mathcal{U}^{(j)}}{(\omega_{j,q}^{2} - 9)} \right) \\ \nu^{(j)} &\equiv -\frac{1}{\alpha_{j,q}^{2}} \omega_{j,q} \lambda^{(j)} \\ \gamma_{m}^{(j)} &\equiv \frac{1}{\alpha_{j,q}^{2}} \left( C_{m}^{(j)} - \frac{(\omega_{m,q} + 1)\mathcal{V}_{m}^{(j)}}{\omega_{j,q}^{2} - (\omega_{m,q} + 1)^{2}} \right) \\ \chi_{m}^{(j)} &\equiv \frac{1}{\alpha_{j,q}^{2}} \left( \mathcal{D}_{m}^{(j)} - \frac{(\omega_{m,q} - 1)\mathcal{W}_{m}^{(j)}}{\omega_{j,q}^{2} - (\omega_{m,q} - 1)^{2}} \right) \\ \mu^{(q)} &\equiv \mathcal{R}^{(q)} - \lambda^{(q)} \\ \kappa^{(q)} &\equiv \mathcal{B}^{(q)} + \frac{3}{8}\mathcal{U}^{(q)} \\ \gamma_{m}^{(q)} &\equiv \mathcal{C}_{m}^{(q)} + \frac{(\omega_{m,q} + 1)}{\omega_{m,q}(\omega_{m,q} + 2)} \mathcal{W}_{m}^{(q)} \\ \chi_{m}^{(q)} &\equiv \mathcal{D}_{m}^{(q)} + \frac{(\omega_{m,q} - 1)}{\omega_{m,q}(\omega_{m,q} - 2)} \mathcal{W}_{m}^{(q)} \end{split}$$

and

$$\begin{aligned} \mathcal{A}^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \sum_{m=1}^{\infty} \left\{ \left( \frac{1}{2} \zeta_{m,q}^{(2)} + \zeta_{m,q}^{(3)} - \alpha_{m,q} \xi_{m,q}^{(2)} \right) I_{0-q,0-m,0-j} + \alpha_{m,q} \xi_{m,q}^{(2)} I_{1-q,1-m,0-j} \right\} \\ &\quad + \frac{1}{4} I_{0-q,0-q,0-q,0-j} + I_{0-q,1-q,1-q,0-j} - \frac{3}{4} I_{2-q,1-q,1-q,0-j} \right] + \delta_{jq} \Omega_2 \\ \mathcal{B}^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \sum_{m=1}^{\infty} \left\{ \left( \frac{1}{2} \zeta_{m,q}^{(2)} - 3\alpha_{m,q} \xi_{m,q}^{(2)} \right) I_{0-q,0-m,0-j} - \alpha_{m,q} \xi_{m,q}^{(2)} I_{1-q,1-m,0-j} \right\} \right. \\ &\quad + \frac{3}{4} I_{0-q,0-q,0-q,0-j} + I_{0-q,1-q,1-q,0-j} - \frac{1}{4} I_{2-q,1-q,1-q,0-j} \right] \\ \mathcal{C}_m^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \left( \frac{1}{2} \zeta_{m,q}^{(1)} - \alpha_{m,q} \left( \omega_{m,q} + 1 \right) \xi_{m,q}^{(1)} \right) I_{0-q,0-m,0-j} - \alpha_{m,q} \xi_{m,q}^{(1)} I_{1-q,1-m,0-j} \right] \\ \mathcal{D}_m^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \left( \frac{1}{2} \zeta_{m,q}^{(1)} - \alpha_{m,q} \left( \omega_{m,q} - 1 \right) \xi_{m,q}^{(1)} \right) I_{0-q,0-m,0-j} + \alpha_{m,q} \xi_{m,q}^{(1)} I_{1-q,1-m,0-j} \right] \end{aligned}$$

$$\begin{aligned} \mathcal{P}^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \sum_{m=1}^{\infty} \left\{ -\left(\frac{1}{2}\zeta_{m,q}^{(2)} - \zeta_{m,q}^{(3)} + \alpha_{m,q}^2 \xi_{m,q}^{(2)}\right) I_{0-q,0-m,0-j} \right. \\ &+ \alpha_{m,q} \left(\frac{1}{2}\zeta_{m,q}^{(2)} - \zeta_{m,q}^{(3)} + \xi_{m,q}^{(2)}\right) I_{1-q,1-m,0-j} \right\} \\ &+ \frac{1}{4} I_{0-q,0-q,0-q,0-j} - \frac{1}{2} I_{0-q,1-q,1-q,0-j} \right] - \delta_{jq} \Omega_2 \\ \mathcal{Q}^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ \sum_{m=1}^{\infty} \left\{ -\left(-\frac{1}{2}\zeta_{m,q}^{(2)} + \alpha_{m,q}^2 \xi_{m,q}^{(2)}\right) I_{0-q,0-m,0-j} \right. \\ &+ \alpha_{m,q} \left(-\frac{1}{2}\zeta_{m,q}^{(2)} + \xi_{m,q}^{(2)}\right) I_{1-q,1-m,0-j} \right\} \\ &+ \frac{1}{4} I_{0-q,0-q,0-q,0-j} - \frac{1}{2} I_{0-q,1-q,1-q,0-j} \right] \\ \mathcal{R}_m^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ -\left(-\frac{1}{2}\zeta_{m,q}^{(1)} + \alpha_{m,q}^2 \xi_{m,q}^{(1)}\right) I_{0-q,0-m,0-j} + \alpha_{m,q} \left(-\frac{1}{2}\zeta_{m,q}^{(1)} + \xi_{m,q}^{(1)}\right) I_{1-q,1-m,0-j} \right] \\ \mathcal{S}_m^{(j)} &\equiv \frac{1}{J_0^2(l_j)} \left[ -\left(\frac{1}{2}\zeta_{m,q}^{(1)} + \alpha_{m,q}^2 \xi_{m,q}^{(1)}\right) I_{0-q,0-m,0-j} + \alpha_{m,q} \left(\frac{1}{2}\zeta_{m,q}^{(1)} + \xi_{m,q}^{(1)}\right) I_{1-q,1-m,0-j} \right] \end{aligned}$$

and

$$\begin{split} \mathcal{T}^{(j)} &= \alpha_{j,q}^{2} \mathcal{P}^{(j)} - \mathcal{A}^{(j)} \\ \mathcal{U}^{(j)} &= \alpha_{j,q}^{2} \mathcal{Q}^{(j)} - 3\mathcal{B}^{(j)} \\ \mathcal{V}_{m}^{(j)} &= \alpha_{j,q}^{2} \mathcal{R}_{m}^{(j)} - (\omega_{m,q} + 1) \, C_{m}^{(j)} \\ \mathcal{W}_{m}^{(j)} &= \alpha_{j,q}^{2} \mathcal{S}_{m}^{(j)} - (\omega_{m,q} - 1) \, \mathcal{D}_{m}^{(j)} \end{split}$$

4 and

$$\Omega_{2} = \frac{1}{2J_{0}^{2}(l_{j})} \left[ \sum_{m=1}^{\infty} \left\{ \left( -\zeta_{m,q}^{(2)} - (\alpha_{m,q}^{2} - \alpha_{m,q})\xi_{m,q}^{(2)} \right) I_{0-q,0-q,0-m} + \alpha_{m,q} \left( \frac{1}{2}\zeta_{m,q}^{(2)} - \zeta_{m,q}^{(3)} \right) I_{0-q,1-q,1-m} \right\} - \frac{3}{2}I_{0-q,0-q,1-q,1-q} + \frac{3}{4}I_{0-q,1-q,1-q,2-q} \right]$$

and

$$\lambda^{(q)} \equiv \mathcal{A}^{(q)} + \mathcal{B}^{(q)} + \frac{3}{8}\mathcal{U}^{(q)} + \sum_{\substack{m=1\\m \neq q}}^{\infty} \left\{ C_m^{(q)} + \frac{(\omega_{m,q}+1)}{\omega_{m,q}(\omega_{m,q}+2)} \mathcal{W}_m^{(q)} + \mathcal{D}_m^{(q)} + \frac{(\omega_{m,q}-1)}{\omega_{m,q}(\omega_{m,q}-2)} \mathcal{W}_m^{(q)} \right\}$$

$$\begin{split} \lambda^{(j)} &\equiv \frac{1}{\omega_{j,q}} \left[ \left\{ \mathcal{A}^{(j)} - \frac{\mathcal{T}^{(j)}}{(\omega_{j,q}^2 - 1)} \right\} + \left\{ \mathcal{B}^{(j)} - \frac{3\mathcal{U}^{(j)}}{(\omega_{j,q}^2 - 9)} \right\} \\ &+ \sum_{\substack{m=1\\m \neq q}}^{\infty} \left\{ \mathcal{C}_m^{(j)} - \frac{\mathcal{V}_m^{(j)} \left(\omega_{m,q} + 1\right)}{\left[ \omega_{j,q}^2 - \left(\omega_{m,q} + 1\right)^2 \right]} + \mathcal{D}_m^{(q)} - \frac{\mathcal{W}_m^{(j)} \left(\omega_{m,q} - 1\right)}{\left[ \omega_{j,q}^2 - \left(\omega_{m,q} - 1\right)^2 \right]} \right\} \right] \end{split}$$

### 2. Similarity solutions

# 2.1. Delta function

The algebra below obtains the axisymmetric Cauchy-Poisson solution for two different initial conditions. These conditions are discussed in Debnath (1994) for pure gravity waves and are re-derived for pure capillary waves, of interest to us here. With the initial condition

$$\hat{\eta}(\hat{r},0) = \frac{\hat{V}_0}{2\pi\hat{r}}\delta(\hat{r}) \tag{2.1}$$

The zeroth order Hankel transformation of  $\hat{\eta}(\hat{r}, 0)$  viz.  $\tilde{\eta}_0(k)$  is Debnath (1994)

$$\tilde{\eta_0}(k) = \frac{\hat{V}_0}{2\pi} \tag{2.2}$$

From the linearised Cauchy-Poisson solution for evolution of the interface  $\eta(r, t)$ , we obtain Debnath (1994)

$$\hat{\eta}(\hat{r},\hat{t}) = \int_0^\infty k \mathbf{J}_0(k\hat{r})\tilde{\eta}_0(k)\cos(\omega\hat{t})dk, \quad \omega^2 = \frac{Tk^3}{\rho}$$
(2.3)

When  $k\hat{r} >> 1$ ,  $J_0(k\hat{r})$  can be approximated as

$$J_0(k\hat{r}) \approx \left(\frac{2}{\pi k\hat{r}}\right)^{\frac{1}{2}} \cos\left(k\hat{r} - \frac{\pi}{4}\right)$$
(2.4)

Using this approximation  $\hat{\eta}(\hat{r}, \hat{t})$  can be written as follows

1

$$\hat{\eta}(\hat{r},\hat{t}) \sim \left(\frac{2}{\pi\hat{r}}\right)^{\frac{1}{2}} \times \frac{\hat{V}_0}{2\pi} \int_0^\infty k^{\frac{1}{2}} \cos\left(k\hat{r} - \frac{\pi}{4}\right) \cos(\omega\hat{t}) dk \tag{2.5}$$

Using the formulae

$$\cos\left(k\hat{r} - \frac{\pi}{4}\right)\cos(\omega\hat{t}) = \frac{1}{4}\left[\exp\left[I\left(\omega\hat{t} + k\hat{r} - \frac{\pi}{4}\right)\right] + cc_1 + \exp\left[I\left(\omega\hat{t} - k\hat{r} + \frac{\pi}{4}\right)\right] + cc_2\right]$$
(2.6)

Here  $cc_1$  and  $cc_2$  are complex conjugates of terms on their left in equation 2.6. Considering outward travelling waves (term 3 and  $cc_2$ ) one can obtain

$$\hat{\eta}(\hat{r},\hat{t}) \sim \frac{1}{4} \left(\frac{2}{\pi \hat{r}}\right)^{\frac{1}{2}} \frac{\hat{V}_0}{2\pi} \int_0^\infty k^{\frac{1}{2}} \exp\left[I\left(\omega \hat{t} - k\hat{r} + \frac{\pi}{4}\right)\right] dk + cc$$
(2.7)

cc is the corresponding complex conjugate. Eqn. 2.7 can be asymptotically solved by method of stationary phase  $(\hat{t} \to \infty)$  Rozman (2017) leading to,

$$\hat{\eta}(\hat{r},\hat{t}) \sim \frac{\hat{V}_0}{4\pi} \left(\frac{k_0}{\omega_0''\hat{r}\hat{t}}\right)^{\frac{1}{2}} \exp\left[I\left(\omega_0\hat{t} - k_0\hat{r} + \frac{\pi}{2}\right)\right] + cc$$
 (2.8)

Where  $k_0$  is the stationary point of  $g(k) = \omega \hat{t} - k\hat{r} + \frac{\pi}{2}$  (i.e  $g'(k_0) = 0$ ) and  $\omega_0 = \omega(k_0)$ . For pure capillary waves ( $\omega = (T'k^3)^{\frac{1}{2}}$ , with  $T' = \frac{T}{\rho}$ ) one can obtain

$$k_0 = \frac{4\hat{r}^2}{9T'\hat{t}^2}$$
(2.9)

Using the value of  $k_0$  and  $\omega_0$  we find

$$\left(\frac{k_0}{\omega_0'\hat{r}\hat{t}}\right)^{\frac{1}{2}} = \frac{4\sqrt{2}}{9} \times \frac{\hat{r}}{\hat{t}^2 T'}$$
(2.10)

$$\omega_0 \hat{t} - k_0 \hat{r} = -\frac{4}{27} \times \frac{\hat{r}^3}{T' \hat{t}^2}$$
(2.11)

Substituting the expressions from 2.10 and 2.11 to 2.8 we obtain

$$\hat{\eta}(\hat{r},\hat{t}) \sim \frac{2\sqrt{2}}{9\pi} \frac{\hat{V}_0 \hat{r}}{T' \hat{t}^2} \sin\left(\frac{4}{27} \frac{\hat{r}^3}{T' \hat{t}^2}\right)$$
(2.12)

From the asymptotic expression of  $\hat{\eta}(\hat{r},\hat{t})$  (2.12) only two non dimensional parameters  $\pi_1$ ,  $\pi_2$  can be obtained. Where  $\pi_1 = \frac{\hat{\eta}T'\hat{t}^2}{\hat{V}_0\hat{r}}$  and  $\pi_2 = \frac{\hat{r}}{(T')^{1/3}\hat{t}^{2/3}}$ . Here  $\pi_2$  is the Keller & Miksis (1983) scale and  $\pi_1$  and be written as a function of  $\pi_2$  only ( $\pi_1 = f(\pi_2)$ ), which makes the system self similar.

#### 2.2. An initial cavity

In contrast to the delta function initial condition earlier which had only one length scale, we now choose an initial condition with two length-scales. This is Debnath (1994)

$$\hat{\eta}_0(\hat{r}) = \hat{d} \left( 1 - \frac{\hat{r}^2}{\hat{a}^2} \right) \exp\left( -\frac{\hat{r}^2}{\hat{a}^2} \right)$$
(2.13)

representing a cavity or a hump for  $\hat{d} \leq 0$ . The Hankel transform Debnath (1994) of this is

$$\tilde{\eta}_0(k) = \frac{\hat{d}\hat{a}^4}{8}k^2 \exp\left(-\frac{1}{4}k^2\hat{a}^2\right)$$
(2.14)

Like earlier we can obtain an asymptotic expression like 2.7 using method of stationary phase

$$\hat{\eta}(\hat{r},\hat{t}) \sim \frac{1}{4} \left(\frac{2}{\pi\hat{r}}\right)^{\frac{1}{2}} \frac{\hat{d}\hat{a}^4}{8} \int_0^\infty k^{\frac{5}{2}} \exp\left(-\frac{1}{4}k^2\hat{a}^2\right) \exp\left[I\left(\omega\hat{t}-k\hat{r}+\frac{\pi}{4}\right)\right] dk + \text{c.c.}$$
(2.15)

Using the method of stationary phase like before we get

$$\hat{\eta}(\hat{r},\hat{t}) \sim \frac{8\sqrt{2}}{729} \frac{\hat{d}\hat{a}^4 \hat{r}^5}{(T')^3 \hat{t}^6} \exp\left(-\frac{4\hat{a}^2 \hat{r}^4}{81(T')^2 \hat{t}^4}\right) \sin\left(\frac{4}{27} \frac{\hat{r}^3}{T' \hat{t}^2}\right)$$
(2.16)

In this case, along with two non dimensional parameters involving  $\hat{\eta}$  and Keller & Miksis (1983) scale respectively viz.  $\pi_1 = \frac{\hat{\eta}(T')^3 \hat{t}^6}{\hat{d}\hat{a}^4 \hat{r}^5}$  and  $\pi_2 = \frac{\hat{r}}{(T')^{1/3} \hat{t}^{2/3}}$ , another non dimensional group  $\pi_3 = \frac{\hat{a}^2 \hat{r}^4}{(T')^2 \hat{t}^4}$  is present. In this case we get  $\pi_1 = g(\pi_2, \pi_3)$ , and the behaviour is not self similar.

## 3. Numerical simulations

The simulation geometry is shown in fig. 1 and uses the same boundary conditions as Basak *et al.* (2021).



Figure 1: Simulation geometry

The simulation parameters are provided in table 1

| Case | $\epsilon$ | $l_q$ | $\hat{R}_0$ | $\hat{a}_0$ | $\hat{H}$ |
|------|------------|-------|-------------|-------------|-----------|
| 1    | 0.8        | 47.9  | 0.4         | 0.0059      | 0.5       |
| 2    | 1.8        | 47.90 | 0.4         | 0.015       | 0.5       |
| 3    | 2.3        | 47.90 | 0.4         | 0.0192      | 0.5       |
| 4    | 2.3        | 74.18 | 0.4         | 0.0124      | 0.5       |

Table 1: Simulations parameters (CGS units)

#### REFERENCES

- BASAK, SASWATA, FARSOIYA, PALAS KUMAR & DASGUPTA, RATUL 2021 Jetting in finite-amplitude, free, capillary-gravity waves. *Journal of Fluid Mechanics* **909**.
- DEBNATH, LOKENATH 1994 Nonlinear water waves.
- KELLER, JOSEPH B & MIKSIS, MICHAEL J 1983 Surface tension driven flows. SIAM Journal on Applied Mathematics 43 (2), 268–277.
- ROZMAN, MICHAEL G. 2017 integration of fast oscillating functions. https://www.phys.uconn.edu/ ~rozman/Courses/P2400\_17S/downloads/stationary-phase.pdf.