Movie Captions

• Movie 1

Spiral turbulence in the full orthogonal domain. Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r = r_{\rm cu} = (r_{\rm i} + r_{\rm n})/2 = 7.705$ (left) and at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$ (right).

• Movie 2

Spiral turbulence in the long and narrow parallelogram domain. Top: Inner $\tau_{\rm i}$ vs outer $\tau_{\rm o}$ normalised torque phase map trajectory (left) and normalised kinetic energy κ time series (right). Bottom: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r = r_{\rm cu} = (r_{\rm i} + r_{\rm n})/2 = 7.705$ (top) and at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$ (bottom).

• Movie 3

Turbulent bursts in the short and narrow parallelogram domain. Top: Inner $\tau_{\rm i}$ vs outer $\tau_{\rm o}$ normalised torque phase map trajectory (left) and normalised kinetic energy κ time series (right). Bottom: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r = r_{\rm cu} = (r_{\rm i} + r_{\rm n})/2 = 7.705$ (left) and at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$ (right), and azimuthal vorticity $\omega_{\theta} \in [-1500, 1500]$ on a θ -constant plane at $\theta = 0$.

• Movie 4

Evolution from a regular train of drifting rotating waves to spiral turbulence. Top: Inner $\tau_{\rm i}$ vs outer $\tau_{\rm o}$ normalised torque phase map trajectory (left) and normalised kinetic energy κ time series (right). Bottom: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$.

• Movie 5

Cross-sectional sweep of an instantaneous flow field of spiral turbulence along the full perimeter of the Taylor-Couette apparatus. Left: Azimuthal vorticity $\omega_{\theta} \in [-1500, 1500]$ colourmaps on θ -section. Right: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r = r_{\rm cu} = (r_{\rm i} + r_{\rm n})/2 = 7.705$ (top) and at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$ (bottom).

• Movie 6

Under-resolved spiral turbulence in the long and narrow parallelogram domain (N = 15). Top: Inner $\tau_{\rm i}$ vs outer $\tau_{\rm o}$ normalised torque phase map trajectory (left) and normalised kinetic energy κ time series (right). Bottom: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r = r_{\rm cu} = (r_{\rm i} + r_{\rm n})/2 = 7.705$ (top) and at the mid-gap radius $r_{\rm m} = (r_{\rm i} + r_{\rm o})/2 \approx 8.05$ (bottom).

• Movie 7

Under-resolved turbulence in the long and narrow parallelogram domain (N = 30). Top: Inner τ_i vs outer τ_o normalised torque phase map trajectory (left) and normalised kinetic energy κ time series (right). Bottom: Radial vorticity $\omega_r \in [-4000, 4000]$ colourmaps on unrolled constant radius sections in the middle of the centrifugally unstable region $r=r_{\rm cu}=(r_{\rm i}+r_{\rm n})/2=7.705$ (top) and at the mid-gap radius $r_{\rm m}=(r_{\rm i}+r_{\rm o})/2\approx 8.05$ (bottom).