
Supplementary Materials

Reduced modeling and global instability of finite-Reynolds-number

flow in compliant rectangular channels

Xiaojia Wang, Ivan C. Christov

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA

SM.1 Numerical scheme for the 1D FSI model

Here, we introduce a numerical scheme used for solving the coupled problem of deformation-induced tension,
wall deformation, and flow. This scheme is also applied to the simpler case of constant tension with given θt.
The spatial domain is discretized using the pseudospectral method (Boyd, 2000), with which the governing
equations are satisfied at preassigned Gauss-type-quadrature nodes. In our case, the Gauss–Lobatto points
are chosen. Therefore, the method is also referred to as “Chebyshev pseudospectral method” or “Chebyshev
collocation method.” Note that in some literature (Shen et al., 2011), the pseudospectral method is specifi-
cally referred to as a Galerkin-type method with the numerical integration using a Gauss-type quadrature,
which is not the case for the present method.

The Gauss–Lobatto points

Z̃j = − cos

(
jπ

N

)
, j = 0, 1, . . . , N (SM.1.1)

are defined on the domain [−1, 1]. (Note that Z̃0 = −1 and Z̃N = 1.) Consequently, we use a change of
variables, Z̃ = 2Z − 1, to transform the computational domain from {Z |Z ∈ [0, 1]} to {Z̃ | Z̃ ∈ [−1, 1]}.
Then, dm/dZm = 2mdm/dZ̃m. There are two major advantages of choosing the Gauss–Lobatto points as
the collocation points. First, the Gauss–Lobatto points are nonuniformly distributed and clustered near
the endpoints Z̃ = ±1, with the spacing scaling as O(N−2), which helps resolve the deformation boundary
layer near the channel outlet. Second, it is convenient to compute derivatives at the Gauss–Lobatto points.
Essentially, the Chebyshev pseudospectral method finds a high-order polynomial-based, valid in the whole
domain, to approximate the actual solution. As long as the functional values are known at the N + 1
collocated points, an N -order polynomial can be uniquely determined.

The Lagrange basis, lj(Z) (j = 0, 1, . . . , N), is a convenient choice for the interpolating polynomial since
the coefficients are just the functional values. Here, lj denotes the Lagrange polynomial which takes the

value of 1 at Z̃ = Zj while being 0 for Zk with k ̸= j. Importantly, the derivatives of the Lagrange basis at
the Gauss–Lobatto points are known analytically. For example, taking Qk ≈ Q|Z̃=Z̃k

, k = 0, 1, . . . , N , then

dQ/dZ̃|Z̃=Z̃k
≈∑N

j=0 D
(1)
kj Qj . Here, the components of the first-order differentiation matrix D(1) are:

D
(1)
kj =

dlj

dZ̃

∣∣∣∣
Z̃=Z̃k

=





−2N2 + 1

6
, k = j = 0,

c̃k
c̃j

(−1)k+j

Z̃k − Z̃j

, k ̸= j, 0 ≤ k, j ≤ N,

− Z̃k

2(1− Z̃2
k)

, k = j, 1 ≤ k, j ≤ N − 1,

2N2 + 1

6
, k = j = N,

(SM.1.2)
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where c̃0 = c̃N = 2 and c̃j = 1 for 1 ≤ j ≤ N − 1. The higher-order differentiation matrix is just the matrix

multiplication of the lower ones, i.e., dm/dZ̃m|Z̃=Z̃k
≈D(m) = [D(1)]m =D(1) ×D(1) × · · · ×D(1).

As for the time integration, a second-order backward-difference formula is used for the flow equations.
Let the time step be ∆T , and a subscript denote the functional value at the corresponding grid point, while
a superscript indicates the time step. Then, equations (5.3a) and (5.3b) are discretized as:

Qn+1
j = 1−

∫ Z̃j

−1

1

2
β
(
˙̄UY

)n+1

dZ̃, (SM.1.3)

Pn+1
j =

∫ Z̃j

1

1

2

{
− R̂e

H̄n+1

3Qn+1 − 4Qn +Qn−1

2∆T
− 6R̂e

5H̄n+1
2D(1) (Q

n+1)2

H̄n+1
− 12Qn+1

(H̄n+1)3

}
dZ̃. (SM.1.4)

Both of these equations have been integrated in space, with Q0 ≡ Q|Z=0 = 1 imposed in equation (SM.1.3)
and PN ≡ P |Z=1 = 0 imposed in equation (SM.1.4). The integral is to be evaluated numerically using
the trapezoidal rule. Note dZ̃ = 2dZ due to the change of variables introduced above. Also, in equation

(SM.1.3), ˙̄UY denotes the velocity of the interface, which can be obtained from equation (SM.1.7b) below.
The so-called Newmark–β method is applied to the governing solid equation (4.9). Then, the spatially

discretized equation (4.9) is written as

M ¨̄UY +KŪY = P, (SM.1.5)

with
M = θII, K = I − θtD

(2). (SM.1.6)

Here, θt is evaluated from equation (4.13). To ensure the accuracy of the numerical integration required
to evaluate θt, the kernel, (dH̄/dZ)2 ≈ (2D(1)H̄)2, is interpolated on the finer grid of N = 1024 using the
barycentric interpolate subroutine in SciPy. Then, a Gauss–Lobatto quadrature is applied on the finer
grids to calculate the integral in equation (4.13).

With the coefficients in equation (SM.1.5) determined, the acceleration, velocity and displacement of the
interface are calculated as

¨̄Un+1
Y =

(
M + ϕ2∆T 2K

)−1
{
Pn+1 −K

[
Ūn
Y +∆T ˙̄Un

Y +

(
1

2
− ϕ2

)
∆T 2 ¨̄Un

Y

]}
, (SM.1.7a)

˙̄Un+1
Y = ˙̄Un

Y + (1− ϕ1)∆T ¨̄Un
Y + ϕ1∆T ¨̄Un+1

Y , (SM.1.7b)

Ūn+1
Y = Ūn

Y +∆T ˙̄Un
Y +

(
1

2
− ϕ2

)
∆T 2 ¨̄Un

Y + ϕ2∆T 2 ¨̄Un+1
Y , (SM.1.7c)

where ϕ1 and ϕ2 are two adjustable parameters. The Newmark–β scheme is unconditionally stable and
second-order accurate if ϕ1 = 1/2 and ϕ2 = 1/4. However, to damp out numerically-induced high-frequency
oscillations, ϕ1 > 1/2 is usually needed (Subbaraj and Dokainish, 1989). In our simulations, we use ϕ1 = 1.0
and ϕ2 = 0.5625.

Finally, the discretized interface equation (4.7) is simply

H̄n+1
j = 1 + β(ŪY )

n+1
j . (SM.1.8)

SM.1.1 Steady-state simulation

As mentioned in the main text, the case with given constant tension can be easily solved using ScPpy’s
solve bvp. However, in the case of the deformation-dependent tension, since θt is unknown, solve bvp is
not as robust and usually has difficulty reaching convergence. Instead, SciPy’s newton krylov method is
applied to resolve the steady-state solution.

At steady state, all of the terms involving ∆T can be neglected. Further, we drop the subscripts on the
spatial discretizations for convenience. Then, equations (SM.1.3), (SM.1.4), (SM.1.5) and (SM.1.8) comprise
a nonlinear algebraic problem. Then, given ŪY , equations (SM.1.8) and (SM.1.4) allow us to evaluate the
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Figure SM.1: Flow chart of the numerical scheme for the dynamic simulations. To the left of the cell where
SciPy’s newton krylov solver is called, the details of the construction of the residual, Rd, is shown. The
superscript I indicates that the quantity is calculated based on P I .

pressure, denoted as PF . At the same time, equation (SM.1.5) can also be used to evaluate the pressure,
denote as PS . Now, we define a residual as

Rs = PF − PS . (SM.1.9)

SciPy’s newton krylov solver is used to minimize the max-norm of Rs, which yields an approximate evalu-
ation for ŪY at steady state. The tolerance used was 6× 10−6.

With ŪY obtained, θt is calculated from equation (4.13) using the Gauss–Lobatto quadrature, as discussed
before. The steady-state solution is then validated with solve bvp by solving equation (6.1), where both
the initial guess and θt are based on the outputs of newton krylov.

SM.1.2 Dynamic simulation

The dynamic problem is solved in a similar manner. At each time step, the nonlinear system of equations
(SM.1.3), (SM.1.4), (SM.1.5) and (SM.1.8) must be solved. However, to get the Newmark–β time integration
(SM.1.7) involved, the residual, Rd, is defined with the pressure as the input, denoted as P I . Then, starting

from equation (SM.1.5), solved with the scheme (SM.1.7), ŪY and ˙̄UY are obtained. Then, H̄ and Q are
evaluated from equations (SM.1.8) and (SM.1.3), respectively. Equation (SM.1.4) gives another evaluation
of the pressure, denoted as, PO. The residual is thus evaluated as

Rd = PO − P I . (SM.1.10)
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Figure SM.2: Grid independence study on the dynamic simulations of FSI in the microchannel with E = 2
MPa under a flow rate of q = 1500 µLmin−1 (case C4). The time histories of the representative quantities
in the system are shown in panels (a) to (e). Panel (f ) shows the two-norm of the difference between the
simulated steady state solution and the “exact” solution, which is computed from the steady simulation with
N = 2048 Gauss–Lobatto points using the scheme described in § SM.1.1. The tolerance used in SciPy’s
newton krylov was 10−8. The errors EH and EP are computed via equation (SM.1.11).

At each time step, SciPy’s newton krylov is used to minimize the max-norm of Rd. The details of this
numerical procedure are summarized in the flow chat in figure SM.1.

Note that at time step n + 1, θt is evaluated as θt = θ̃t
∫ 1

0
(D(1)H̄n)2 dZ. The integral is approximated

using the Gauss–Lobatto quadrature after interpolating the kernel on the finer grid of N = 1024. Here, we
use H̄n instead of H̄n+1 in order to avoid another nonlinear problem requiring “internal iterations” on θn+1

t .
We have verified that the results using H̄n instead of H̄n+1 do not differ from those evaluated based on more
involved method using H̄n+1.
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Figure SM.3: Time histories of (a) inlet pressure P (0, T ), (b) outlet flow rate Q(1, T ), the vertical velocity
˙̄UY of the fluid–solid interface at (c) Z = 0.1 and (d) Z = 0.9. All panels are for case C3 but using different
time step sizes ∆T . The spatial grid is fixed to have N = 128 nodes.

SM.1.2.1 Grid independence study

Next, we verify the grid independence of the numerical results shown in the main text. The case chosen
to perform the grid independence study is C4 from table 5 (corresponding to E = 2 MPa and q = 1500
µLmin−1). For case C4, we have shown in § 7 that the inflated steady state is linearly stable to infinitesimal
perturbations. If the flat initial condition (5.6) is used, then the system will reach the steady state eventually.

The end time for the simulation is Tend = 2.0. However, for the clarity of the presentation, only the
results between T = 0 and T = 1.2 are shown. Furthermore, the ratio of the smallest grid size to the
time step is fixed for every simulation. Since the smallest spacing of the Gauss–Lobatto grid points goes as
O(N−2), then as N is doubled, ∆T is decreased by a factor 4 accordingly. The time step for N = 32 is
∆T = 4× 10−4. As shown figure SM.2(a) and (e), all of the representative quantities agree well with each
other as ∆T is refined, except on the courses grid with N = 32,

After the simulation has reached T = Tend, the deformed interface shape, H̄end(Z), and the pressure
distribution within the channel, P end(Z) are compared with an “exact” steady-state solution. The latter
are denoted as H̄e(Z) and P e(Z), respectively. The “exact” solution is taken to be the steady state of the
simulation with N = 2048, and tolerance for SciPy’s newton krylov set to 10−8. We define two L2-norm
based error estimates:

EH =


1

2

N−1∑

j=1

(H̄end
j − H̄e

j )w
√
1− Z̃2

j




1/2

, (SM.1.11a)

EP =


1

2

N−1∑

j=1

(P end
j − P e

j )w
√
1− Z̃2

j




1/2

, (SM.1.11b)

which are written in the discrete form using the Gauss–Lobatto quadrature. Here, w = π/N are the weights,

5



and we choose N = 2048. Figure SM.2(f ) shows that the error decreases with the increase of N . The cases
of N = 32, 64 and 128 even display an exponential decay for EH . However, since the “exact” solution is not
really exact, both error estimates tend to “saturate” for N = 256.

As for the linearly unstable cases, the errors defined in equation (SM.1.11) are not applicable because the
system will not reach steady state. In these cases, each simulation is tested with different time step sizes, and
only the converged results are shown. The spatial grid is typically fixed as N = 128 for satisfactory accuracy
(as shown in figure SM.2). One example for case C3 is shown in figure SM.3. In panel (c) and (d), the vertical
velocity of the fluid–solid interface is obtained as follows. First, we substitute the simulated H̄ into equation
(5.1) to obtain V 2D

Z . Then, we compute V 2D
Y based on conservation of mass, i.e., ∂V 2D

Z /∂Z+∂V 2D
Y /∂Y = 0.

Lastly, we obtain ˙̄UY = β−1V 2D
Y |Y=H̄ using equations (5.2) and (4.7). The actual simulation time is longer

than the time window shown for each case. However, it is observed that after a certain T , the results with
different time step sizes begin to diverge, indicating this nonlinear 1D FSI model’s dynamic behavior may
be chaotic. Understanding such an interesting possibility is beyond of the scope of the current work.

SM.2 A Chebyshev pseudospectral method for the generalized
eigenvalue problem

We solve the generalized eigenvalue problem (7.4) using the approach proposed by Inamdar et al. (2020).
However, since the boundary conditions for equation (7.4) are different from the boundary conditions of
Inamdar et al. (2020), we employ another modified Lagrange polynomial basis, now written as

Q̃(Z̃) ≈ (1 + Z̃)

N∑

j=1

Q̃j
ℓj(Z̃)

1 + Z̃j

, H̃(Z̃) ≈
N−1∑

j=1

H̃jℓj(Z̃) + H̃N (1− Z̃2). (SM.2.1)

It is easy to check that Q̃(Z̃j) = Q̃j and H̃(Z̃j) = H̃j , except that H̃(Z̃N ) = 0 ̸= H̃N , meaning that Q̃j and

H̃j are the collocated function values; H̃N is introduced ensure the satisfaction of the boundary condition.
Also note j starts from 1 instead of 0, because equation (SM.2.1) has already satisfied the conditions that

Q̃ = dQ̃/dZ̃ = 0 at Z̃ = −1, and H̃ = 0 at Z̃ = ±1. The two remaining boundary conditions at Z̃ = 1 in
equation (7.6) are enforced manually.

Next, the generalized eigenvalue problem (7.4) is collocated at the Gauss–Lobatto points from j =
1, 2, . . . , N − 1, with the unsatisfied boundary conditions enforced at j = N . This approach gives rise to the
2N × 2N matrices A and B in equation (7.4). Due to the imposition of the boundary conditions at Z̃ = 1,
B is singular. Thus, we invert A to obtain a regular eigenvalue problem, A−1Bψ = (iωG)

−1ψ, which can
be solved using SciPy’s eig.

Finally, to filter out any spurious modes, each calculation has been performed with N = 600 and N = 800
grid points and cross-checked. Only the converged modes are reported in the text.
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