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1 Approximated toughness dominated solution K̂
The solution of Germanovich et al. [2014] recognizes that in the toughness limit, the 3D buoyant fracture has
a finger-like geometry consisting of a toughness dominated head and a viscosity dominated tail. The head
has a constant volume and shape and a strictly hydrostatic net pressure, as viscous dissipation is neglected.
The viscous tail has a constant breadth, the net pressure is uniform at every horizontal cross-section, and
the vertical net pressure gradient is negligible compared to buoyancy.

1.1 Toughness dominated head
The shape of the head is solved numerically by Germanovich et al. [2014] such that KI = KIc all along the
propagating part of the head front. A linear hydrostatic pressure is set in the head which leads to a constant
and uniform breadth in its lower part. The toughness head scaling applies, in other words, the characteristic
scales are:

bhead
k̂

= `head
k̂

= `b =
K

2/3
Ic

∆γ2/3
, whead

k̂
=

K
4/3
Ic

E′∆γ1/3
, (1)

phead
k̂

= K
2/3
Ic ∆γ1/3, V head

k̂
= Qotkk̂ =

K
8/3
Ic

E′∆γ5/3
= `2bw

head
k̂

. (2)
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In the head, fluid flow is negligible such that according to Poiseuille’s law,

∂p

∂z
= ∆γ

The head is divided into a rounded part where lateral expansion occurs and a bottom, laterally stationary
part. Using a local coordinate system whose origin is centred at the boundary between the expanding and
stationary part: z̃ = z − `head

k̂
(γhead − λ), in dimensionless form, the dimensionless pressure becomes

Π(ζ, ξ) = ζ − (γhead − λ)

where γhead the dimensionless head length scaled by `b and ζ = z/`b. The condition

KI = KIc

is imposed for ζ ∈ [0, λ], while the breadth is constant for ζ < 0 and given by β`b, i.e.:

b(ζ < 0)/`b = β

where β is the unknown dimensionless breadth in the laterally stationary part and db/dζ = 0 at ζ = 0.
Solving numerically the elasticity equation using a piece-wise constant displacement discontinuity method in
combination with the previous constraints, Germanovich et al. [2014] arrives at the following solution for the
total breadth of the fracture

b(ζ > 0)/`b = β
√

1− a(ζ/λ)2 − (1− a)(ζ/λ)4 a ≈ 0.6967 (3)

in the laterally spreading part, of the head with the following dimensionless extent of the laterally spreading
region

λ ≈ 1.3935×
(

0.249
√

2/π
)2/3

≈ 0.4745

the dimensionless head size
γhead ≈ 5.19×

(
0.249

√
2/π

)2/3
≈ 1.7671

and dimensionless breadth:
β ≈ 2× (0.249

√
2/π)2/3 ≈ 0.6809 ≈ π−1/3.

We show that the evolution of the breadth in the head (over λ, equation (3)) matches our simulations in
figures 2g - i by red dashed lines. In fine, the dimensional head breadth, length, net pressure and volume are
respectively

b ≈ 0.6809`b ≈ π−1/3`b
`head ≈ 1.7671`b

p ≈ phead
k̂
×
(
z/`b − (γhead − λ)

)
V head ≈ 0.7008`2bw

head
k̂

1.2 Viscous tail
The tail is modelled as a long finger-like hydraulic fracture for which the usual PKN hydraulic fracture model
assumptions apply. Notably, the elastic relation can be written at the cross-section z

w(z, x) = 2
bp(z)

E′

√
1− 4x2/b2 x ∈ [−b/2, b/2]

with p the net pressure. The average width of the cross section is related to the net pressure simplys as:

w̄(z) = π
bp(z)

2E′
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The fluid flow in the tail is 1D,

∂w̄

∂t
+
∂qz
∂z

= δ(z)Qo/b

and with a cross-sectional average of Poiseuille’s law is:

qz = − w̄3

π2µ

(
∂p

∂z
−∆γ

)
In the viscous tail ∂p

∂z � ∆γ, such that

qz ≈
w̄3∆γ

π2µ
.

and the global volume balance in the tail is

b

∫ `tail

0

w̄dz = Qot− V head

accounting for the constant volume of the head. Looking for a self-similar solution for which the average
width w̄ is uniform and constant in the tail and the velocity in the tail is constant such that

vz =
d`tail

dt
= qz/w̄ =

w̄2∆γ

π2µ
.

The volume balance of the tail becomes

b`tailw̄ = Qot− Vhead
which provides the expression for the velocity in the tail:

d`tail

dt
=
Qo

bw̄
=
w̄2∆γ

π2µ

such that we obtain

w̄ =

(
π2Qoµ

b∆γ

)1/3

p =
2E′

πb

(
π2Qoµ

b∆γ

)1/3

and
`tail =

Qot

bw̄
− Vhead

bw̄
. (4)

It is possible to rewrite equation (4) using the characteristic tail length `k̂ as

`tail =
121/3

π2/3β2/3
`k̂ −

Vhead
bw̄

where we now replace V head (with its numerical pre-factor) and w as defined previously and use by the scales
in (1) using `tail = γtail`b to obtain

γtail ≈ 121/3

π2/3β2/3

(
∆γ13/9Q

2/3
o t

K
10/9
Ic µ′1/3

− 0.7008
K

14/9
Ic

µ′1/3Q
1/3
o ∆γ2/9E′

)
.

We now replace the time as τ = t/tkk̂ and note that

M−1/3
k̂

=
K

14/9
Ic

µ′1/3Q
1/3
o ∆γ2/9E′

such that we get

γtail ≈ 121/3

π2/3β2/3
M−1/3

k̂
(τ − 0.7008) ≈ 1.3789M−1/3

k̂
(τ − 0.7008) . (5)
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A comparison of our numerical simulations with this value is presented in table 1 of the main text.
We estimate from this equation the dimensionless time τ for which the dominant linear term will be valid

within a given percentages. We pose the equation as

ε
121/3

π2/3β2/3
M−1/3

k̂
τ = γtail → τε =

0.7008

1− ε

where ε is the “error” between the linear term and the complete solution. We estimate the error to be within
our maximum numerical error of 5% (e.g. ε = 0.95) such that we get a dimensionless time of

τ0.95 =
(
t/tkk̂

)
0.95
≈ 14.0

this limit for convergence is used within the main text section 4.2 to describe the transient .
It is now possible to derive the total fracture length by the addition of the head length to the tail length

(5) as
γtotal = γtail + γhead ≈ 1.3789M−1/3

k̂
(τ − 0.7008) + 1.7671

This expression for γtotal is plotted with green dashed lines in figure 2c of the main text. We additionally
present the dominant term 1.3789M−1/3

k̂
τ with green dashed-dotted lines.

We finally derive the scales of the opening and the pressure in the tail. According to Germanovich et al.
[2014] they are given in their scaling as

p/p∗ = w/w∗ =

(
Qo/Q∗

2α

)1/3

where w is the average opening in the tail. Transformed in our scaling these two quantities read

p

1.3674phead
k̂

= 0.7281M1/3

k̂
→ p/phead

k̂
= 0.9956M1/3

k̂

w

1.46264whead
k̂

= 0.7281M1/3

k̂
→ w/whead

k̂
= 1.0650M1/3

k̂
.

From which we now can derive the maximum opening (at the centerline x = 0) as

w (0, z) =
4

π
w (z)→ w (0, z) /whead

k̂
= 1.3559M1/3

k̂
.

1.3 Limit of applicability of their theory
Germanovich et al. [2014] argue that their solution is only valid as long as the breadth in the tail is stationary.
To validate this condition, the pressure in the tail cannot exceed the value required for lateral fracturing (i.e.
p ≤ KIc/

√
πβ`b). This condition results in a dimensionless release rate in their contribution

Q/Q∗ < 0.1761.

We can translate their dimensionless release rate into our scaling as

Q/Q∗ = 0.1922Mk̂

such that the above inequality leads to the following limit

0.1922Mk̂ < 0.1761→Mk̂ < 0.9159

which is reported as the limit ofMk̂ ≈ 0.92 in section 6 of the main text.
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2 Viscosity dominated solution in the source region
The scales presented by Lister [1990a] in equations 2.14 correspond qualitatively (upon numerical prefactors
and by replacing t by solving ` (t) = z for t) to the scaling listed in equation 5.4 of the main text . We
rederive their scaling using our parameters to plot the corresponding solutions in figures 5 and 6 of the main
text. First, we can retrieve his scales using our characteristic fracture length

`m̂ (t) = z =
∆γ1/2Q

1/2
o

E′1/6µ′1/3
t5/6 → tz =

E′1/5µ′2/5

∆γ3/5Q
3/5
o

z6/5

such that we obtain them as

bLister, 1990 (z) = 0.6335× bm̂ (t = tz) = 0.6335
Q

1/10
o µ′1/10E′3/10

∆γ4/10
z3/10

wLister, 1990 (z) = 0.5086× wm̂ (t = tz) = 0.5086
Q

3/10
o µ′3/10

E′3/10∆γ6/10
z−1/10

hLister, 1990 (t) = 2.5698× `m̂ (t) = 2.5698× ∆γ1/2Q
1/2
o

E′1/6µ′1/3
t5/6

It is now possible to get the breadth plotted in figure 5a of the main text by replacing z = ζ`m̂ (t), using the
prefactors to his solution, and then dividing by our breadth scale

bpseudo 3D (ζ)

bm̂ (t)
= 1.6629× ζ3/10

similarly, we can get the opening at the centerline, the opening profile (with ξ = x/bm̂), and the cross-sectional
volume as

wpseudo 3D (ξ = 0, ζ)

wm̂ (t)
= 0.9197× ζ−1/10

wpseudo 3D (ξ, ζ)

wm̂ (t)
= 0.9197×

(
1− 0.3616

ξ2

ζ3/5

)
ζ−1/10∫ 1

−1 w
pseudo 3D (ξ, ζ) dξ
wm̂ (t) bm̂ (t)

= 1.8017ζ1/5

The central opening and the 2D cross-sectional volume are respectively used in figures 5c and b of the main
text. We give further their transition scale from viscosity- to toughness-dominated for buoyant fractures as

`Lister, 1990
mk = 5.76× 10−4`mk.

The opening distribution used in figures 6c and d is scaled by the time-independent transition scales `mm̂

and wmm̂. The opening distribution in such scaling is interestingly exactly equivalent to the one presented
previously.

3 Post-processing of the numerical results

3.1 Automatic evaluation of characteristic quantitites
All of the following is either performed by the PyFrac function get_fracture_geometric_parameters() or
get_fracture_head_volume() .

Global quantitites The numerical data of PyFrac [Zia and Lecampion, 2020] includes the intersections of
the fracture front C (t) with the cell edges (c.f. figure (1)).We extract from these points the fracture breadth
vector at the locations zi as b (z, t) from the subtraction between the intersections on the positive (i.e. where
xi > 0) and the negative side (i.e. where xi < 0). In the vector notation, we have z as the vector of all the
intersections of the front with a discrete cell edge on the z-axis. There is no ambiguity in this evaluation as

5



Figure 1: Flow chart of numerical evaluation. Black circles mark the origin, blue squares are max head
opening, red stars distance to the maximum breadth, green polygons location of the head evaluated by the
“opening method”, and yellow cross the update with the pressure check.
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the release point is chosen as (x, z) = (0, 0) and needs to be at a cell centre, and the z−axis is an axis of
symmetry of the problem.

From the breadth we obtain the maximum breadth by simply taking the maximum of b (z, t). Note that
as between two edge intersections the connection is a straight line. We ensure that the maximum breadth
evaluated as such is actually the maximum breadth in the simulation. We then also estimate the distance to
the maximum breadth as

`max
z
{b(z,t)} = min

{
zi ∈ b (z, t) ≥ 0.975 ·max

z
{b (z, t)}

}
.

We acknowledge a variation of 2.5% along the breadth as numerical noise. To stabilize the scheme, notably
for toughness-dominated cases, we thus decide to take the distance to the maximum breadth as the smallest
value of an intersection zi where the breadth exceeds 97.5% of its maximum observed. This further allows
us to get an average breadth b (t) and a variance of the breadth var

z
{b (z, t)}.

The fracture height is evaluated as the distance between the maximum vertical extent and the minimum
vertical extent,

` (t) = max {z} −min {z} .

The last quantity we measure is the distance to the lower end of the fracture from the release point (i.e. the
downward growth of the fracture) as `low = |min {z}|.

Some of the quantities are displayed in figure 1. See also the sketch of figure 1 of the main text.

Local quantities We are mainly interested in the quantities within the head of the fracture. To achieve
those we need first to decide if a head exists and what its extent is. To do so we get the pressure and opening
profiles along the centerline of the fracture (e.g. w (x = 0, z, t)) evaluated at the cell center. We then search
for the release point (i.e. z = 0) and get the location of the overall maximum opening max

z
{w (x = 0, z, t)}.

We check if the maximum opening is at the origin (with a security margin of 4 cells around the origin) or
elsewhere.

1. Maximum opening at the origin: If the maximum opening is at the origin, we check for a sign
change in the derivative of the opening between the origin and the top of the fracture. If we do not
have such a case the opening monotonically decreases from the injection point to the fracture tip and
we do not have a head as such. In this case, we evaluate the head length `head (t) as

`head (t) = max {z} if no head exists.

If the decrease between the release point and the fracture tip exists, we check for the location where the
opening starts to increase again towards the fracture tip. This allows us to define the location of the
maximum opening in the head, which is further away than the previously mentioned change of slope
but still inside the fracture. In between this maximum opening and the location where fracture breadth
starts to increase again must necessarily be at least two inflexion points. We take the first inflexion
point from the sign change in the opening as the location of the head length (the second is where the
opening slope starts to decrease towards the head).

2. Maximum opening in the head: If the maximum opening is not at the origin, it must be in the
head. If such is the case, we search for a sign change between the origin and the maximum opening
and proceed as previously described. There might not be any sign change (flat tail above the release
point). In the configuration without sign change, we directly search for all inflexion points and take
the one second closest to the maximum opening in the head (the closest one would be where the slope
of the opening starts to decrease towards the head).

The just described evaluation method is called the “opening method” from here on.
We perform a “check” using the pressure distribution on all opening method evaluations. The primordial

usage of the opening is favoured because our scheme provides a better estimate of opening than pressure. For
the pressure “check”, we first evaluate if the maximum breadth occurs in the head using the head length defined
via the “opening method”. If such is the case, we chose the head breadth bhead (t) = b

(
ztip (t)− `head (t) , t

)
as

the maximum breadth to reduce numerical noise in our results. If a head exists, we check if a local pressure
minimum exists inside the previously evaluated head. If so, we redefine the beginning of the head from this
local minimum to the tip. Otherwise we leave the evaluation unchanged.
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The maximum head opening and pressure are then defined according to our evaluation of the head
dimensions, and the breadth is calculated as

bhead (t) = b
(
ztip (t)− `head (t) , t

)
.

It remains for us to obtain the volume of the head. We obtain this by a simple summation over the elements
contained in the head. We define the channel ehead

ci channel means fully inside the fracture, c.f. figure 1)
and the tip ehead

ti (elements where the front passes, c.f. figure 1) elements in the head using the previously
obtained dimensions of the head. The volume in the head is then simply given by

V head (t) = Ae


nc∑
i=1

w (x (eci) , z (eci) , t) +

nt∑
j=1

f (etj)w (x (etj) , z (etj) , t)


where Ae is the (uniform) element area, and f the filling fraction of the tip element. The filling fraction is
the percentage of the area which is occupied by the fracture.

3.2 Definition of uniform breadth
The distinction between uniform and non-uniform breadth is based on a post-processing evaluation within
Mathematica. The evaluation is performed on the last time-step of the simulation. From the post-processing
within PyFrac [Zia and Lecampion, 2020], we know where the head starts and where the maximum breadth
is located. On the footprint, we thus extract the breadth in between as the breadth of the tail

btail
(
ztail, t

)
for `max

z
{b(z,t)} ≤ ztail ≤ ztip − `head (t) .

This is the domain for which the breadth would need to be uniform for the fracture to be classified as
finger-like. We recall that we defined the distance to the maximum breadth with a 2.5% margin. In our
decision regarding a uniform breadth, we need to account for this uncertainty. We define our decision upon
the breadth being uniform using the maximum difference in breadth in the tail

max
z

{
btail

(
ztail, t

)}
−min

z

{
btail

(
ztail, t

)}
max

z
{btail (ztail, t)}

≤ 0.04

which corresponds to a 4% relative difference. If we subtract the 2.5% error already included due to the
evaluation of the distance. This leaves us with a maximum variation of 1.5% that we accept. This evaluation
is used to obtain figure 8 of the main text and defines the discussion of uniform (finger-like) vs non-uniform
(inverted cudgel) breadth.

4 2D steadily moving semi-infinite buoyant hydraulic fracture solver
We derive from the two-dimensional formulation the following scales

`2Db =
E′1/2Q

1/6
2D µ

′1/6

(∆ρg)2/3
, w2D

b =
Q

1/3
2D µ

′1/3

(∆ρg)1/3
, p2D

b = E′1/2Q
1/6
2D µ

′1/6(∆ρg)1/3 (6)

and a dimensionless toughness

κ =
KIc

E′3/4µ′1/4Q
1/4
o

where the 2D release rate is obtained using Q2D = vz∗w∗. This leads us to the following set of scaled equations
for the 2D semi-infinite fracture

Π2D
(
ξ̂2D
)

=
1

4π

∫ ∞
0

∂Ω

∂η̂2D
dη̂2D

ξ̂2D − η̂2D
elasticity

1 = Ω2

(
∂Π

∂ξ̂2D
+ 1

)
lubrication

Ω =

√
32

π
κ
(
ξ̂2D
)1/2

ξ̂2D � 1 LEFM
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where ξ̂2D = x̂/`2Db is the scaled distance to the tip with x̂ = vz∗t− z the tip based coordinate.
The two-dimensional semi-infinite buoyant hydraulic fracture is now solved via a numerical scheme based

on a Gauss-Chebyshev quadrature. Using this approach for elastic boundary integral equations is well
established [Erdogan et al., 1973] and has been used for similar problems before [Viesca and Garagash, 2018,
Moukhtari and Lecampion, 2018]. We follow mainly the developments presented in Moukhtari and Lecampion
[2018], albeit including the buoyant stress gradient. The same discretization method is chosen such that one
has

∂Ω

∂ξ̂2D
=

√
32

π

κ

ξ̂2D
+

√
ξ̂2Dφ

(
ξ̂2D
)

(7)

with φ
(
ξ̂2D
)
the unknown, non-singular dislocation density represented as a Chebyshev polynomial. This

approach allows us to naturally embed the LEFM condition in the discretization, which will thus automatically
be verified. We solve for the values of the Chebyshev polynomal using third kind Gauss-Chebyshev polynomial
which use two sets of nodes v = {vj} with j = 1, ..., n and u = {ui} with i = 1, ..., n. The use of third kind
polynomials directly declines from equation (7), as naturally the corresponding weight function ω (s) appears
after the following variable transformation [Ioakimidis and Theocaris, 1980, Viesca and Garagash, 2018]

ξ̂2D =
1 + v

1− v
, ω (s) =

√
1 + v

1− v
.

The related set of points, corresponding to the roots of the third and fourth Chebyshev polynomials respec-
tively, are given as

vj = cos

(
πj

n+ 1/2

)
, j = 1, .., n; ui = cos

(
πi

n+ 1/2

)
, i = 1, ..., n.

This allows us to discretize the elasticity equation as

Π2D
(
ξ̂2Dj

)
1− vj

=
1

4π

n∑
i

Ai

1− ui

φ
(
ξ̂2Dj

)
vj − uj

where ξ̂2Dj = ξ̂2D (vj) and Ai = π (1 + ui) / (n+ 1/2) is the quadrature weight. From this equation, we create
the following elasticity matrix

Kij =
1

4π

n∑
i

Ai

1− ui
1− vj
vj − uj

.

The lubrication equation is discretized via a finite difference scheme at the mid-points ξ̂2Dj+1/2

Ω
(
ξ̂2Dj+1/2

)2Π2D
(
ξ̂2Dj+1

)
−Π2D

(
ξ̂2Dj

)
ξ̂2Dj+1 − ξ̂2Dj

+ 1

 = 1 (8)

where we recall that due to equation (7), the opening is given by

Ω
(
ξ̂2Dj+1/2

)
=

√
32

π
κξ̂2Dj+1/2 + φ

(
ξ̂2Dj+1/2

)
. (9)

Note that we obtain φ
(
ξ̂2Dj+1/2

)
by linear interpolation of φ

(
ξ̂2D
)
. We need now to set a single last condition

to close the system, which we choose as a zero pressure condition at infinity Π2D
(
ξ̂2Dn

)
= 0. The problem

is then solved via the built-in Mathematica find root function using a quasi-Newton method with a finite
difference approximation of the jacobian. The sequence to solve the problem is then as follows:

1. Create the discretization with the elasticity matrix K and the interpolation function of φ
(
ξ̂2Dj+1/2

)
2. Give an initial estimate of the pressure. The estimate of the initial pressure is performed step-wise:
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Figure 2: 2D semi-infinite opening (a) and pressure (b) in the scaling of equation (11). Blue-dashed lines
correspond to the solution of Roper and Lister [2007] for KRoLi07 = 32 (equations (12)). Simulation with
KRoLi07 = 2 shows the evaluation points as markers. Relative error ((c) opening and (d) pressure) of our
numerical evaluation with the solutions (12).

(a) We use the so-called viscosity asymptote (Desroches et al. [1994]) as an initial guess for a value
of κ ≈ 0.16, which we know to have a good convergence. We then stepwise reduce its value to
κ ≈ 0.02, using the previously obtained pressure distribution as an initial guess.

(b) Depending on the value of κ in our problem, we choose the closest corresponding pressure dis-
tribution. The value of κ ≈ 0.02 is sufficient to get a good convergence for the solver even when
κ = 0 in the zero toughness case.

3. Solve iteratively until the residual convergence (Accuracy Goal of Mathematica set to 8):

(a) We use the built-in linear solve function of Mathematica to solve the equation

Π2D = K · φ

at the discrete points for φ
(
ξ̂2Dj

)
.

(b) Evaluate the opening at the mid-points by equation (9).
(c) Use equation (8) to build a residual.
(d) Estimate the new pressure distribution from the residual and restart at (a)

Note: The K∗ used in the code is directly equal to

K∗ =

√
32

π
κ.

4.1 Validation with limiting solutions
Large-toughness limit The large toughness limit has been solved in the article Roper and Lister [2007].
However, to compare, we need to make our scales equivalent, which requires some additional steps. We have
the following equivalencies between their and our scales

x̂ =
1

2
`2Db , ĥ =

1

2
w2D

b , p̂ =
1

2
, KRoLi07 =

1

2

√
32

π
κ =

1

2
K∗ (10)
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where KRoLi07 is their dimensionless toughness as in equation 2.10. We further need to pay attention that
their opening h equals to our w/2. Roper and Lister [2007] then rescale those parameters again to obtain

X =
x/x̂

K
2/3
RoLi07

=
2 · 22/3 x/`2Db

K
2/3
∗

, H =
h/ĥ

K
4/3
RoLi07

=
24/3 w/w2D

b

K
4/3
∗

, P =
p/p̂

K
2/3
RoLi07

=
2 · 22/3 p/p2D

b

K
2/3
∗

(11)

They now derive an approximated solution for the opening and pressure in this scaling. The output of our
numerical solver is the scaled coordinates x/`2Db , opening w/w2D

b , and pressure p/p2D
b .

We use as a comparison and validation of our code the opening with the first order tail correction and
the zero-order pressure

H =
1

2
X1/2 (2−X)

3/2
+H (x− 2)K

−4/3
RoLi07

√
2
X1/4 (x− 2)

3/4

(2x2 − 2x− 1)
1/2

P =
3

2
−X +H (x− 2)

(2X − 1) (X − 2)
1/2

2X1/2
(12)

where H is the Heaviside theta function. We compare the solutions graphically in figures 2a and b and present
the errors in the head obtained for an evaluation with n = 400 and κ ≈ 10, 20 (KRoLi07 = 16, 32) in figures
2c and d. Note that we present the relative error which explains the increase when approaching the zero in
pressure at X ≈ 1.5. The absolute error in this range is small if we compare it using figure 2b Generally, the
relative error remains within a few per cent except towards the end of the head. This can be explained by
the enforced continuity of our model as opposed to the Heaviside functions present in the analytical solutions
(12). Additionally, one observes that the error on the opening increases towards the transition from the
head to the tail. The reason is that the corrected head solution tends to 0 at X = 2 whereas our solution
is continuous. The match between the solutions in the tail is then again well visible when comparing the
opening at values of X � 2.

Zero-toughness limit TTo ensure that the code also works in the other limit of zero-toughness we compare
the results to the numerical results with K∗ = 0 presented in figure 3 of Lister [1990b]. This data is picked
numerically and then rescaled from the scales provided in the figure. Figure 2 is comparing graphically our
opening profile for a simulation with K∗ = KRoLi07 = κ = 0 in “our” scales (6). Generally, the match is nearly
perfect except around the maximum opening. Around maximum opening the picking of the data from the
figure was very difficult as the resolution there made it very hard to determine the exact location of the graph.
Nonetheless, the very good match elsewhere as well as the correspondence for the toughness-dominated case,
allow us to conclusively state that our numerical 2D Gauss-Chebyshev solver of the semi-infinite fracture is
valid for the entire range of κ possible.

5 Comparison with experiments

5.1 Heimpel and Olson (1994)
We try to compare the experimental investigations performed by Heimpel and Olson [1994] with our numerical
results. The equivalent solid and fluid properties of their experiments are reported in table 1. The plain
strain modulus E′ is derived from their shear modulus G with the assumption of a Poisson’s coefficient of
ν ≈ 0.5 (also estimated by them) as

E′ =
2G (1 + ν)

1− ν2
.

The toughnesses reported are the ones they obtain using a critical volume. It is interesting to note that
this critical volume corresponds to our toughness-dominated head volume V head

k̂
(see equation 4.1 of the

main text). We infer this correspondence because our simulations present a similar kink in the velocity (see
figure 10a of the main text) as observed in their experiments. Using this resemblance, we can estimate the
fracturing toughness from the critical volume as

V c =
K

8/3
Ic

E′∆γ5/3
→ Kc

Ic = (V c)
3/8

E′3/8∆γ5/8

11
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Figure 3: Comparison between the zero-toughness solution extracted from Lister [1990a] figure 2 (blue-dashed
line) with our zero-toughness Gauss-Chebyshev evaluation (red line).

Gelatines
Concentration G [Pa] KIc

[
Pa ·
√
m
]

ν [-] ρs
[
kg ·m−3

]
E′ [Pa]

1.4% 190 15

0.5 1000

760
1.6% 276 19 1104
1.8% 355 23 1420
4.0% 2150 114 8600

Fluids
Fluid type µ [Pa · s] g′

[
m · s−2

]
µ′ [Pa · s] ∆γ

[
Pa ·m−1

]
Air 10−5 9.8 1.2× 10−4 9.8× 103

Hexane 10−4 3.4 1.2× 10−3 3.4× 103

1 Cst silicon Oil 10−3 1.8 1.2× 10−2 1.8× 103

Mineral Oil 10−1 1.5 1.2 1.5× 103

Corn syrup solution 5× 100 −4.1 6× 101 −4.1× 103

Corn syrup/cadmium 5× 100 1.41 6× 101 −1.41× 103

Mercury 10−3 −126 1.2× 10−2 −1.26× 105

Table 1: Properties of the solids and the fluids used in the experiments of Heimpel and Olson [1994]. The
parameters after the double boundary are estimated or derived and not explicitly reported in Heimpel and
Olson [1994].
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where we use the superscript ·cto indicate the critical volume. We report the result in table 2 and observe
an acceptable match between the two approaches.

For the fluids, a buoyancy g′ is reported. From their reported values we obtain our∆γ with the assumption
of a gelatine density akin to the density of water ρs ≈ 1000

[
kg ·m−3

]
g′ =

∆γ

ρs
→ ∆γ = ρsg

′.

Velocity comparison
For a series of experiments, Heimpel and Olson [1994] report the injected volume and fracture velocity

(their figure 2). We extract the values of this visualization and scale the results with our K̂ head scales (see
equation 4.1 of the main text) as follows

V

V head
k̂

=
QoE

′∆γ5/3t

K
8/3
Ic

=
t

tkk̂

U

∂`k̂ (t) /∂t
=

˙̀(t)
˙̀̂
k

= ˙̀(t)
Q

2/3
o ∆γ7/9

K
4/9
Ic µ′1/3

where we estimate the unknown Qo for laboratory experiments as Qo = 1.× 10−8
[
m3 · s−1

]
. We can thus ob-

tain our numerical velocity using the time steps and increments of height (i.e. ˙̀ (ti) ≈ (`i − `i−a) / (ti − ti−1))
and compare it to their values of U reported in figure two. Similarly, the volume of the abscissa of their figure
2 can be transformed into a dimensionless time using their parameters for the experiments. The so obtained
figure is shown in the main text as figure 10a overlayed with three numerical simulations.

We report for the experiments the obtained value of the dimensionless viscosityMk̂ (equation 3.8 of the
main text) to derive the length necessary to overcome the transient phase

`t ≈ 19M−1/3
k̂

`b.

In table 2, this value is compared with the sample height Hs. We observe that generally, the distance to
overcome the transient is much larger than the sample size. This indicates that boundary effects due to the
finiteness of the sample, as well as the initiation condition (which is poorly known) significally influence the
results.

5.1.1 Breadth comparison

In figure 10b of the main text, we compare three values of fracture breadth from this contribution to the
limiting breadth of the K̂-solution of Germanovich et al. [2014]. The breadth values used are extracted from
figures 8 and 9 of Heimpel and Olson [1994]. We list the values in table 3 along with their relative error.

5.2 Taisne and Tait (2009)
We use the table of breadths reported in Taisne and Tait [2009] to compare their breadth to the predicted
breadth from the K̂-solution of Germanovich et al. [2014]. We use their values of the Young’s modulus
reported in table 1 and again estimate the Poisson’s coefficient of the gelatine as ν ≈ 0.5. As they directly
report∆ρ, we obtain the buoyancy∆γ by simple multiplication with the earth acceleration g = 9.81

[
m · s−2

]
.

We document our values in table 4, where the experiment N° corresponds to the value reported in table 1 of
Taisne and Tait [2009]. The definitions of bobs and bpred are as in table 3.
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