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Supplementary Material

An appropriate numerical initialisation of the liquid sheet is critical to trigger droplet shedding. Consequently, to
demonstrate the robustness of our study, we have performed a range of simulations varying the initial perturbation,
ε, and the initial ratio of the film thickness to the radius of the rim, e.

The initial instability, ε

First, we turn our attention to the breakup time of liquids and the selection of ε. According to Driessen et al. [2], in
the inviscid limit, the maximum growth rate of a surface perturbation is inversely proportional to the capillary breakup
time, tcap = (ρa3o/σ)1/2. However, when viscosity plays a role, the R-P instability needs to account for a nonlinear
term which depends on the Oh number. Consequently, the (dimensionless) growth rate of the viscous-mediated R-P
instability is given by
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that the R-P instability is triggered at kmax, the breakup time tB is given by:
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where δ is the initial amplitude of the perturbation (at t = t0), and the relative initial disturbance is given by ε = δ/a0.
Under our conditions, as clearly seen in Figure 1(a), a large ε is required for the breakup dynamics to be driven by
the surface perturbation.

Figure 1(a-c) shows the effect of the initial perturbation, ε, on the dynamics of the liquid sheet in the absence of
surfactants when Oh = 0.0833 and e = 0.2 at t = 188. Here, the three-dimensional representation of the interface
shows that, in the absence of ε, the rim is stable and does not lead to perturbations on its surface. Therefore, it
is evident the need of an initial ε to trigger the growth of the nonlinear modes. We observe that the addition of a
perturbation leads to a capillary singularity. As expected, the larger the ε is, the shorter the capillary breakup time.
In addition, we monitored the temporal evolution of the ligament’s tip position and the kinetic energy as a function
of ε, see figure 1b and c. We observe similar trends regardless of the value of the initial perturbation.

Figures 1(d-f) show the effect of the initial perturbation, ε, on the sheet dynamics in the presence of surfactants when
βs = 0.3. The three-dimensional representation of the interface shows that in the presence of ε the R-P instability
triggers droplet detachment for ε > 0.1 (see figure 1d). In the absence of an initial ε, there is an uniform recoiling, and
the only effect observed is the convection of surfactant from the rim towards the sheet, resulting in the reopening of
the sheet. Similar trends are observed for the ligament’s tip position, and the kinetic energy, regardless of the initial
perturbation amplitude (see figure 1e,f).

The initial ratio of the film thickness to the radius of the rim, e

Next, we turn our attention towards the variation of the ratio of the film thickness to the radius of the rim, e, for
surfactant-free cases (see figure 2).

Sweeping across a range of e is a delicate job as this requires adjusting the overall size of the domain, and con-
sequently affecting the computing costs. In simulations, as demonstrated by Fullana & Zaleski [3], the break up of
a liquid rim, due to a surface instability, depends on the size of the domain, i.e. in short domains (in the work of
Fullana & Zaleski [3] (1999), the total length of the sheet was 40 times its thickness) every unstable mode eventually
becomes linearly stable but, for a sufficiently large spatial domain, the surface remains unstable and the dynamics
are driven by the perturbation. In our study, the total length of the sheet is ∼ 305 times the thickness of the sheet.

Figure 2 illustrates the effect of varying the initial ratio of the film thickness to the radius of the rim, e, on the rim
dynamics. Figure 2(a-c) shows the variation of e, for surfactant-free cases. We observe that this parameter affects
heavily the dynamics of the tip location and the kinetic energy. Figure 2(d-f) shows the effect of the initial radius
rim, e, on the sheet dynamics in the presence of surfactants when βs = 0.3.

Figure 2 shows a three-dimensional representation of the interface where the R-P instability triggers droplet de-
tachment for βs > 0.3. In the absence of an initial ε, there is an uniform recoiling, and the only effect observed is
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FIG. 1: Effect of the initial amplitude of the perturbation, ε, for the surfactant-free and surfactant-laden cases
corresponding to panels (a-c) and (d-f), respectively. Three-dimensional representation of the interface at t = 188,
the temporal evolution of the ligament’s tip position, the kinetic energy are shown in panels (a)-(d), (b)-(e) and

(c)-(f), respectively. Here, Oh = 0.0833 and e = 0.2; for the surfactant-laden case: βs = 0.3 and Γ = Γ∞/2
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FIG. 2: Effect of the parameter e for the surfactant-free and surfactant-laden cases corresponding to panels (a-c)
and (d-f), respectively. Three-dimensional representation of the interface at t = 188, the temporal evolution of the

ligament’s tip position, the kinetic energy are shown in panels (a)-(d), (b)-(e) and (c)-(f), respectively. Here,
Oh = 0.0833 and ε = 0.25; for the surfactant-laden case: βs = 0.3 and Γ = Γ∞/2 (same legend as figure 1d).
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the convection of surfactant from the rim towards the sheet, resulting in the reopening of the sheet. Similar trends,
regardless of the initial perturbation amplitude, are observed for the ligament’s tip position and the kinetic energy
(see figure 2e,f).

In addition, our selection of e = 0.2 is justified by the work by Agbaglah et al. [1], that presented 3D numerical
simulations on retracting sheets leading to droplet detachment. In fact, their results have guided this study. Agbaglah
et al. [1] chose an initial value of e = 0.2, so that the viscous effects on the rim could be minimized; allowing for
inertia and surface tension to dominate the rim dynamics.
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