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S1. Generalised Rayleigh–Plesset Equation

The classical Rayleigh–Plesset equation for an incompressible liquid was generalised
by Prosperetti (1982) to include non-Newtonian and mass transfer effects. In this case,
the radial component of the momentum equation for an incompressible fluid in spherical
coordinates is given as:
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where ρl is the density of the liquid, P and u represent the pressure and velocity,
respectively, at a radial distance r and time t. τrr, τθθ, and τϕϕ represent the radial,
polar and azimuthal elements of the viscous stress tensor, respectively. Given the identity
τθθ + τϕϕ = τrr when assuming spherical symmetry (i.e. neglecting the θ and ϕ velocity
components), this expression is integrated from the bubble radius R to infinity giving:
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with Ul representing the radial liquid velocity at the bubble interface, P (R, t) the pressure
on the liquid side of the interface, and P∞ the far field pressure.
The conditions of conservation of mass and momentum across the bubble interface

give:
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where J is the mass flux across the interface, Pv, ρv and Uv the vapour pressure, density
and velocity at the interface, respectively, and γ is the surface tension.
Eliminating the P (R, t) term, and expressing Ṙ in terms of Ul and J , Prosperetti

(1982) gives the generalised expression as:
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In the case of a Newtonian liquid, where τrr = 2µ(∂u/∂r), this equation becomes:
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When the ratio of bubble to liquid density is low ρv ≪ ρl, the effects of mass transfer
can be neglected. This is the case when the fluid is away from the critical point. In this
case, J = 0 and Ul = Ṙ and equation (S1.6) simplifies to the classical Rayleigh–Plesset
equation (equation 2.2 of the paper).

S2. Plesset–Zwick Equation

As a vapour bubble grows, heat must be extracted from the liquid to overcome the
latent heat requirement for phase change to occur. The rate of heat transfer Q̇ required
to grow the bubble is given by:
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with hlv representing the latent heat of evaporation. This heat transfer rate must be
matched by the heat conducted at the bubble interface:

Q̇ = −4πR2k
∂T

∂r
, (S2.2)

where k is the liquid thermal conductivity.

Plesset & Zwick (1954) provided a zero-order approximation for the bubble wall
temperature:
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by assuming that heat is conducted through a thin thermal boundary layer, where α =
k/ρlcp is the thermal diffusivity of the liquid with cp representing the heat specific heat
capacity at constant pressure, and (∂T/∂r)R is the temperature gradient at the bubble
wall. Equating equations (S2.1) and (S2.2), and substituting the temperature gradient at
the interface into equation (S2.3), an asymptotic solution for the bubble’s radial velocity
was derived:
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, (S2.4)

where the Jakob number Ja is the ratio of sensible heat to latent heat, given by Ja =
ρlcp∆T0/ρvhlv, where ∆T0 is the initial liquid superheat.

S3. Complex Form of the FIT model

The full inertio-thermal (FIT) model for the radial velocity Ṙ, is given by the root of
the equation
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where A and τRP represent the inertial Rayleigh–Plesset limiting velocity and corre-
sponding timescale, respectively, and B = Ja

√
12α/π, as in the analysis of Mikic et al.

(1970). In the case of τRP = 0, i.e. in the absence of dynamic inertial effects, the equation
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can be factorised to give:(
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These roots correspond to the Plesset–Zwick (PZ) model, the rejected negative solution

in the Mikic–Rohsenow–Griffith (MRG) analysis and the MRG model. This factorisation
cannot be performed for finite τRP, however, the equation can be solved using Cardano’s
formula for solving cubic equations in the form ax3 + bx2 + cx+ d = 0. For this analysis,
it becomes convenient to define the following terms:

∆0 = b2 − 3ac, (S3.3)

∆1 = 2b3 − 9abc+ 27a2d, (S3.4)
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The discriminant of the equation can then by given by ∆ = (4∆3
0 − ∆2

1)/27a
2.

Substituting the values of a, b, c, and d from equation (S3.1) and rearranging we can
write the discriminant as:
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where χ is the ratio τ2RP/t
2. As all of the terms in equation (S3.6) are positive, the

discriminant will always be positive. This indicates that the equation will have three
distinct real solutions, except at t = 0, where two of the solutions will be identical
(Ṙ = 0).
The FIT model can then be expressed in the form:
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with ξ being the principal cube root of unity:
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, (S3.8)

and n being 2. This corresponds to the canonical third of the three cube roots being the
FIT model. As in the case with no dynamic inertial effects (equation (S3.2)), the first
canonical root corresponds to the PZ model and the second to the rejected solution from
the MRG analysis. While we have shown that the roots of the equation are real, it is not
possible to express the roots in a real form. The roots of this type of cubic equation can
only be written symbolically in a complex form. However, when the numeric value of the
roots are calculated, they will always be real.

S4. Agreement of IT Models

The approximations made in the derivations of the approximate inertio-thermal (AIT)
and simple inertio-thermal (SIT) models introduce additional errors into the predictions
when compared to the FIT model. Analysing the disagreement between the model
predictions gives further insight into the applicability of these models. Figure S1 shows
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Figure S1. Relative error of the (a) AIT and (b) SIT models compared to the FIT model for
various ratios of τRP/τMRG.

plots of the relative error of the (a) AIT and (b) SIT models to those predicted by the
FIT model. These error values are given for a bubble of initial radius R0 as:

Relative Error =
|R−RFIT|
RFIT −R0

. (S4.1)

To evaluate model agreement, the radii predicted by the AIT model were compared to
those values predicted by the FIT model for various values of the ratio I = τRP/τMRG.
The relative error in the AIT predictions is presented in figure S1(a), which shows that
the error peaks at t ≈ τRP for τRP/τMRG = 1, moving to earlier times as this ratio
increases and later as it decreases. This maximum relative error value is shown to be
∼ 20% across all values of I, dropping quickly beyond that and reaching a value of ∼ 5%
after 10 inertial timescales. The maximum relative error is obtained for a ratio of I ≈ 4,
with the error decreasing as the ratio is changed from this value.
The SIT model predictions are compared to the FIT model in figure S1(b) to highlight

when it is appropriate to use the model. The relative error now peaks consistently at a
time of 0.25τRP . We can see that there is improved agreement compared to the AIT
model for ratios τRP/τMRG < 1, as the relative error of the SIT model goes to zero
at comparatively lower values of τRP , in contrast with the AIT model in figure S1(a),
where they remain non-zero for the entire duration. The maximum error increases with
τRP/τMRG and, unlike the AIT model, continues to increase indefinitely with τRP/τMRG.
In the paper, the FIT, AIT, and SIT models are given in terms of the variables A,

B, and τRP. As these equations are dependant on three variables, investigating their
influence on the relative error is important. It then becomes convenient to analyse the
equations in terms of three alternate variables, namely τRP, τMRG and R0. In this case,
we can clearly see that for a given ratio of τRP/τMRG the values are dependant only on
R0. Therefore we have shown in figure S2 the variation of the errors plotted in figure S1
for various values of R0 for the case of τRP/τMRG = 1. We have presented these radii in
terms of τRP with a 1m/s scaling. We can see that there is excellent agreement in the
error values for both the AIT and SIT equations across all values of R0, indicating that
the error is dependant only on the ratio of the inertial and thermal timescales τRP/τMRG.

S5. Effect of Temperature-Pressure Relationship

One of the most significant sources of error in the MRG model is the simplification of
the temperature-pressure relationship of the fluid (Lee & Merte 1996; Robinson & Judd
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Figure S2. Relative error of the (a) AIT and (b) SIT models compared to the FIT model for
various initial radii at a timescale ratio of τRP/τMRG = 1.

2004; Prosperetti & Plesset 1978). In their original work, Mikic et al. (1970) approximated
this relationship using the integrated Clapeyron equation:

Pv − P∞ =
ρvhlv

Tsat
|Tv − Tsat| . (S5.1)

This relationship accurately captures the slope of the temperature-pressure curve
near the saturation temperature but consistently underestimates the actual vapour
pressure (Theofanous & Patel 1976; Prosperetti & Plesset 1978). This leads to under-
predictions of bubble radii as the inertial limiting velocity is under-predicted. This is
particularly noticeable in the inertial-controlled regime, i.e. for t < τMRG. Lee & Merte
(1996) compared the predictions of the model to their numerical calculations using a
more accurate temperature-pressure relationship. They showed that the MRG model
consistently under-predicted the radius, with a maximum error of 40%.
To more accurately capture the inertial limiting velocity, a linear relationship between

the fluid temperature Tv and vapour pressure, in terms of the initial pressure difference
∆P0, has been used instead (Prosperetti & Plesset 1978; Robinson & Judd 2004):

Tv − Tsat

∆T0
=

Pv − P∞

∆P0
. (S5.2)

This linear relationship accurately captures the inertial limiting velocity. However,
the vapour pressure is overestimated as the bubble grows and cools, resulting in over-
predictions of the bubble radius. In their comparisons of the MRG model using this linear
temperature-pressure relationship, Lee & Merte (1996) showed that the bubble radii were
always over-predicted, again with a maximum error of 40%.
A surprising result in the results presented in the paper is the apparent improved

agreement of the SIT model with the cases tested compared to the AIT model, which is
counter-intuitive given the AIT model captures more physics and is therefore expected to
be more accurate. We explain this result in a straightforward way using two facts: a) the
IT models rely on equation (S5.2) to model the temperature-pressure relationship, which
means that they are expected to overpredict the bubble radii as discussed previously;
and b) the SIT model assumes that cooling is occurring as if the bubble is growing at
its inertial limiting velocity and subsequently increases the rate at which bubble growth
slows in the early stages†. Therefore, as per a) above, both AIT and SIT overpredict the

† It is for this reason, as we have shown in the derivation of the model, that it should only
be applied when the inertial timescale τRP is greater than the thermal timescale τMRG.
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Figure S3. Predictions of the RP, MRG, and IT models compared to MD data using
(a) the Clapeyron equation (S5.1) and (b) the linear relationship (equation (S5.2)) as the
temperature-pressure relationship.

bubble radius, but b) means the SIT model consistently underpredicts the bubble radius
relative to AIT. The “fortuitous self-cancellation” that results from a) and b) is that SIT
deceptively appears to give more accurate predictions in the paper figures, but this only
results from a systematic (i.e., not physics-based) underestimation of the bubble radius
which happens to “reduce” the overall error in this instance.
When the Clapeyron equation is used, we see an under-prediction of the radius by

both the AIT and SIT models. This is expected, as equation (S5.1) under-predicts the
initial vapour pressure. This can be further seen by comparing against the entirely inertial
Rayleigh–Plesset equation, which under-predicts the bubble size. In this case, the error
of the AIT model increases to 40%, matching the maximum errors seen in the MRG
model, while the SIT model error increases to 60% as the inherent error in the model
and the error in the temperature-pressure relationship compound. Interestingly, we see
excellent agreement of the FIT equation, which does not capture the effects of capillarity
and viscosity. The FIT model’s over-predictions due to the absence of capillarity and
viscosity appear to be compensated by the under-predictions of the temperature-pressure
relationship.

S6. Molecular Dynamics Simulation Methodology

Molecular dynamics (MD) simulations were performed to measure the growth of
nanoscale vapour bubbles using the open source software LAMMPS (Plimpton 1995).
The interactions between the molecules were calculated using the truncated Lennard–
Jones potential:

U(rij) = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (S6.1)

where σ is the characteristic length scale, ϵ is the potential well depth, and r is the
distance between two molecules, denoted by the subscripts i and j. The interaction
parameters used in these simulations are σ = 0.34 nm and ϵ = 0.2392 kcal/mol,
respectively, which were chosen to model Argon (Maroo & Chung 2008). The potential
is truncated for values of r > rcut, where rcut = 1.3 nm. The simulations are performed
with a timestep of 5 fs.
The system setup used in the MD simulation is shown in Figure S4(a). A liquid cube of

side length 60nm was created using the software package Packmol (Mart́ınez et al. 2009).
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The number of argon molecules N was chosen to be slightly lower than the saturation
density, creating a supersaturated liquid. For the 130 K simulations a value of N ≈
3.7×106 argon molecules were used. In the higher temperature (T = 135K) simulations,
a lower value of N ≈ 3.2×106 was used, reflecting the lower saturation density. This fluid
slab was contained between two FCC walls, which are used to maintain the fluid pressure
during the bubble’s growth. During the simulation, one wall is kept fixed in place, while
the second is allowed to translate in the normal direction after fluid equilibration.
The system is initially equilibrated (with both surfaces fixed) in the NVT ensemble

until the potential energy of the system reached a steady value. The piston is then
released to apply the required pressure P∞, through a constant force F , applied to each
particle. The force is given by F = P∞AP /NP , where AP is the wetted area of the
piston, and NP is the number of piston atoms. During this stage, a fictitious damping
force was also added to the piston to prevent excessive oscillations, which could lead to
cavitation bubbles forming in the liquid. The damping force was calculated by scaling
the velocity of the piston by a damping constant, c. The critical damping constant can
be calculated as c = 2

√
mK, using the mass of the piston m, and the stiffness of the fluid

K, which was measured by adjusting the pressure of the piston in separate equilibrium
simulations. The system was equilibrated again in the NVT ensemble until the piston
reached a steady position, at which point the damping was removed from the piston.

At this point in the simulation setup, molecules were removed from a spherical region in
the liquid. A smaller number of vapour molecules were then inserted into this void, with
the number of molecules set to match the saturated vapour density, as highlighted by
the simulation segment in Figure S4(b). This system was then run in the NVT ensemble
for 1000 timesteps to equilibrate the bubble, preventing any cavitation bubbles from
forming in the system, and the setup was fully equilibrated at this point. The production
simulations could then be performed in the NVE ensemble. These simulations were run
for a total of 200,000 timesteps.

In the cases tested here, the bubbles were large enough that thermal noise in the
measurement of thermodynamic properties, such as temperature or pressure, did not
play a significant role in determining the dynamics of the bubbles (Allen & Tildesley
2017, pp. 46-49). It is worth noting that thermal noise may make it more difficult to
produce accurate measurements for smaller bubbles.

S7. Bubble Volume Measurements

The radius of the bubble was determined by measuring the volume of the bubble, V ,
and converting it to an equivalent radius Req using the equation Req = (3V/4π)1/3. The
volume of the bubble was measured by overlaying the simulation domain with a cubic
lattice of nodes prior to running the simulation, and determining the number of these
nodes in vapour-like regions. A node was determined to be in liquid-like or vapour-like
regions based on its coordination number, which is defined as the number of molecules
within a specified distance. A cutoff of 15 argon molecules within a distance of 1.3 nm
was chosen as the criterion for a vapour-like lattice node. This criterion was determined
from analysing the radial distribution function of the liquid and vapour in a separate
simulation, and focusing on a coordination number clearly between the values of liquid
and vapour. Each lattice node determines whether a cube of volume d3, where d is the
spacing of the lattice nodes, is in a liquid-like or vapour-like region. The total bubble
volume is therefore the number of vapour-like lattice nodes multiplied by d3. An example
of the vapour like lattice nodes can be seen in Figure S4(c). This bubble measurement
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Figure S4. (a) The MD simulation domain, red atoms show argon, blue atoms show the bottom
(stationary) surface and yellow atoms show the piston. (b) A simulation slice, showing the
presence of a vapour bubble in the bulk of the fluid. (c) Detected bubble from lattice coordination
number showing vapour like nodes.
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Figure S5. The measured radius of a vapour bubble for domain sizes of 60 nm and 80 nm
with T = 130 K, P = 0.1 MPa, and R0 = 7 nm.

technique can be implemented directly in LAMMPS by creating fictitious molecules to
represent the lattice nodes.
To show the independence of the measured bubble radii from the size of the domain,

secondary simulations were performed with a side length of 80nm. As before, the system
was equilibrated prior to the insertion of a bubble and then allowed to grow in the NVE
ensemble. Figure S5 shows a comparison of the growth rates measured for the case of
T = 130K, P = 0.1MPa, and R0 = 7nm for the two domain sizes: 60nm and 80nm. From
the plot we can see good agreement between the two data sets. This is to be expected as
the sum of the bubble radius and diffusive thermal length scale, given as δ =

√
αt, is less

than the distance between the bubble interface to the periodic boundary throughout the
simulation.
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